МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Материаловедения и физики металлов

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«Материаловедение 2»

Направление подготовки (специальность) 24.05.02 Проектирование авиационных и ракетных двигателей

Квалификация выпускника *инженер*

Форма обучения *очная*

УФА 2017

Исполнитель: _доцент	Зарипова Р.Г		
Зам. Заведующий кафедрой:	Караваева М.В		

Место дисциплины в структуре образовательной программы

Дисциплина «*Материаловедение 2*» является обязательной дисциплиной вариативной части УП.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки специальности *24.05.02 Проектирование авиационных и ракетных двигателей*, утвержденного приказом Министерства образования и науки Российской Федерации от «16» февраля 2017 г. № 141.

Целью освоения дисциплины является дать теоретически обоснованные и экспериментально подтвержденные представления о строении и свойствах современных материалов, используемых для авиационных двигателей и технологиях изготовления изделий из них.

Задачи освоения дисциплины:

- 1. Развитие у студентов способности разбираться в конструкционных материалах авиастроения, выбирать способы создания в них необходимой структуры с целью обеспечения оптимальных свойств, правильно использовать материалы в зависимости от условий эксплуатации;
- 2. Научить студентов применять полученные знания и умения в профессиональной деятельности, развитие практических навыков и необходимых компетенций в целях обеспечения востребованности таких специалистов на рынке труда.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

No	Формируемые	Код	Знать	Уметь	Владеть
	компетенции	- 73			
1	способностью внедрять	ПК-	- марки и	- выбирать	-навыками
	в производство	13	классификацию	необходимое	работы с
	авиационных и		материалов для	технологическое	основным и
	ракетных двигателей и		авиационной	обеспечение при	вспомогательным
	энергоустановок ЛА		техники;	изготовлении	оборудованием
	перспективные		- основные	изделий для	для
	конструкционные		принципы выбора	авиационной	технологических
	материалы, а также		материалов и	техники с	процессов.
	новые способы		технологий для	использованием	
	формообразования и		использования в	перспективных	
	воздействия на		авиационной	технологических	
	полуфабрикаты,		технике;	процессов;	
	заготовки, детали и				
	готовые изделия				
2	способностью выбирать	ПСК-	основные	выбирать	- навыками
	основные и	1.7	механические и	материалы для	пользования
	вспомогательные		эксплуатационные	авиационной	банком данных
	материалы,		характеристики	техники на	материалов
	используемые при		конструкционных	основе анализа	
	изготовлении		материалов,	комплекса	
	авиационных		применяемых в	свойств и	
	двигателей, их узлов и		авиастроении	технических	
	элементов			заданий	

Содержание разделов дисциплины

Трудоемкость обучения – 72 ч (2 3Е) в 3-семестре.

$N_{\underline{0}}$	Наименование и содержание разделов				
1	Введение. Классификация материалов для авиационной техники. Краткий обзор				
	перспективных материалов.				
	Конструкционные металлические материалы для работы в интервале температур до 600°C.				
	Новые магниевые, алюминиевые, алюминий-литиевые сплавы, титановые сплавы.				
2	Конструкционные металлические материалы для работы в интервале температур выше				
	600°С. Никелевые сплавы. Жаропрочные и жаростойкие стали.				
3	Промышленные композиционные материалы с металлической и неметаллической				
	матрицей. Классификация.				
	Виды и свойства упрочнителей. Нитевидные кристаллы. Волокна. Характеристики				
	углеродных волокон. Микроструктура и свойства. Способы изготовления.				
	Композиционные материалы на основе Al, Mg, Cu, Ni, Fe. Области применения.				
	Углерод-углеродные КМ. Характеристики матрицы. Особенности свойств				
	пространственно-армированных углерод-углеродных композиционных материалов.				
	Процессы получения и обработки композитов.				
4	Порошковые металлические материалы. Обзор перспективных направлений развития				
	технологии порошковых материалов. Производство порошков и их свойства. Новые				
	технологические процессы в порошковой металлургии.				
5	Керамические материалы. Оксидные системы. Бескислородные тугоплавкие соединения и				
	сиалоны. Перспективные технологии получения и обработки керамик.				

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.