МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

УЧЕБНОЙ ДИСЦИПЛИНЫ

«ФИЗИКА-1»

Уровень подготовки высшее образование — специалитет (высшее образование - бакалавриат; высшее образование — специалитет, магистратура)

Специальность 10.05.05 «Безопасность информационных технологий в правоохранительной сфере» (код и наименование специальности)

Специализация <u>Технологии защиты информации в правоохранительной сфере</u> (наименование специализации)

> Квалификация (степень) выпускника *Специалист*

> > Форма обучения <u>очная</u>

Год начала подготовки - 2013

Место дисциплины в структуре образовательной программы

Дисциплина «Физика-1» является дисциплиной базовой части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего профессионального образования по специальности 090915 Безопасность информационных технологий в правоохранительной сфере, утвержденного приказом Министерства образования и науки Российской Федерации от "01" февраля 2011 г. № 132, а также в соответствии с Приказом Министерства образования и науки Российской Федерации от 19 декабря 2013 г. № 1367 г. «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры» и актуализирована в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по специальности 10.05.05 Безопасность информационных технологий в правоохранительной сфере, утвержденного приказом Министерства образования и науки Российской Федерации 19 декабря 2016 г. № 1612. Является неотъемлемой частью основной профессиональной образовательной программы (ОПОП).

Целью освоения дисциплины является: освоение студентами основных физических явлений, законов и возможностей их применения для решения научно-технических задач в теоретических и прикладных аспектах, возникающих в последующей профессиональной деятельности выпускников технического университета.

Задачами курса физики являются:

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
 - формирование у студентов основ естественнонаучной картины мира;
- ознакомление студентов с историей и логикой развития физики и основных её открытий.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций:

Планируемые результаты обучения по дисциплине

планируемые результаты обутения по дисциплине					
Формируемые компетенции	Код	Знать	Уметь	Владеть	
Способность выявлять	ОПК-1	физические	решать типовые	методами матема-	
естественнонаучную		основы механики,	задачи по основным	тического описания	
сущность проблем,		статистической	разделам курса, ис-	физических явлений	
возникающих в ходе про-		физики и	пользуя методы ма-	и процессов,	
фессиональной		термодинамики,	тематического ана-	определяющих	
деятельности, и		понятия	лиза; использовать	принципы работы	
использовать		электродинамики,	физические законы	различных	
общенаучные методы,		электричества и	при анализе и реше-	технических	
законы физики матема-		магнетизма,	нии проблем про-	устройств; методами	
тический аппарат,		законы и теории	фессиональной дея-	корректной оценки	
методы моделирования и		классической и	тельности; выделять	погрешностей при	
прогнозирования разви-		современной	физическое со-	проведении физичес-	
тия процессов и явлений		физики;	держание в при-	кого эксперимента;	
при решении профессио-		современную	кладных задачах бу-	методами проведения	
нальных задач.		научную	дущей деятельности	физических	
		аппаратуру.		измерений.	

Содержание разделов дисциплины

No	Наименование и содержание разделов		
1	Механика Кинематика материальной точки и поступательного движения твердого тела. Работа и энергия. Закон сохранения момента импульса и динамика вращательного движения. Основы специальной теории относительности.		
2	Молекулярная физика и термодинамика Статистический и термодинамический методы исследования макросистем. Молекулярно- кинетическая теория идеального газа. Явления переноса в термодинамических неравновесных системах. Основы термодинамики.		
3	Электричество и магнетизм Электрическое поле в вакууме. Диэлектрики в электрическом поле. Проводники в электрическом поле. Энергия электрического поля. Постоянный электрический ток. Основы классической электронной теории электропроводности металлов. Магнитное поле в вакууме. Магнитное поле в веществе. Электромагнитная индукция.		

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.