МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государс т венное бюдже тное образова тельное учре ждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной гидромеханики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ¹ УЧЕБНОЙ ДИСЦИПЛИНЫ

«КАВИТАЦИОННЫЕ ТЕЧЕНИЯ В СИСТЕМАХ ГИДРАВЛИЧЕСКИХ И ПНЕВМАТИЧЕСКИХ ПРИВОДОВ»

Уровень подго товки высшее образование - магис тра тура

Направление подго товки (специальнос ть) 13.04.03 Энерге тическое машинос троение

Направленность подготовки (профиль, специализация): Автома тизированные гидравлические и пневматические системы и агрегаты

Квалификация (степень) выпускника магистр

Форма обучения очная

Уфа 2015

W:

CCP

Должность

Подпусь

Подпуск

Заведующий кафедрой

Примска уной информациания подпись

ff Ife UUSCh В. Д.

¹ Аннотация рабочей программы дисциплины отражает краткое содержание рабочей программы дисциплины, являющейся неотъемлемой частью основной профессиональной образовательной программы.

Место дисциплины в структуре образовательной программы

Дисциплина «Кавитационные течения в системах гидравлических и пневматических приводов» является дисциплиной по выбору вариативной частиОПОП по направлению подготовки 13.04.03 Энергетическое машиностроение (уровень магистратура).

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.04.03 Энергетическое машиностроение(уровень магистратура), утвержденного приказом Министерства образования и науки Российской Федерации от «21» ноября2014 г. № 1501. Является неотъемлемой частью основной образовательной профессиональной программы (ОПОП).

Целью освоения дисциплиныприобретения навыков составления математических моделей объемных гидроприводов и методов анализа статических и динамических характеристик с учетом нестационарных гидрогазодинамических явлений.

Задачи:

- ❖ постановка, планирование и проведение научно-исследовательских работ теоретического и прикладного характера при разработке новых гидро- и пневмоагрегатов; разработка перспективных конструкций гидравлических и пневматических машин, систем и оборудования; оптимизация проектных решений СГиППр с учетом неустановившегося движения рабочей среды;
- изучение нестационарных и кавитационных процессов в элементах гидроавтоматики летательных аппаратов на примере быстродействующего рулевого гидропривода беспилотного летательного аппарата (БЛА) специального назначения.
- **⋄** разработка пакетов прикладных программ и использование численных методов расчета течений двухфазных сред в СГиППр сложных технических объектов.

Входные компетенции:

Ŋ	<u>√o</u>	Компетенция	Код	Уровень освоения, определяемый этапом	Название дисциплины (модуля), сформировавших
				формирования	данную компетенцию
				компетенции*	
		способностью использовать			Моделирование
	1	методы решения задач	ПК-1	базовый	переходных процессов в
	1	оптимизации параметров	11111	Оазовый	системах гидравлических и
		различных систем			пневматических приводов

^{*-} **пороговый уровень** дает общее представление о виде деятельности, основных закономерностях функционирования объектов профессиональной деятельности, методов и алгоритмов решения практических задач;

⁻базовый уровень позволяет решать типовые задачи, принимать профессиональные и управленческие решения по известным алгоритмам, правилам и методикам;

⁻повышенный уровень предполагает готовность решать практические задачи повышенной сложности, нетиповые задачи, принимать профессиональные и управленческие решения в условиях неполной определенности, при недостаточном документальном, нормативном и методическом обеспечении.

Исходящие компетенции:

№	Компетенция	Код	Уровень освоения, определяемый этапом формирования компетенции	Название дисциплины (модуля), для которых данная компетенция является входной
1	способностью использовать знание теоретических основ рабочих процессов в энергетических машинах, аппаратах и установках, методов расчетного анализа объектов профессиональной деятельности	ПК-2	базовый	Современные системы гидравлических и пневматических приводов
2	способностью использовать знания теоретических и экспериментальных методов научных исследований, принципов организации научно-исследовательской деятельности	ПК-4	базовый	Тепломассообмен в системах гидравлических и пневматических приводов

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций:

	·	1		T	1	
No	Формируемые	Код	Знать	Уметь	Владеть	
	компетенции					
	способностью	ПК-2	основы теории и	использовать	навыками	
	использовать		методов расчета	объектно-	использования	
	знание теоре-		кавитационных	ориентированные и	основных законов	
	тических основ		течений	иные пакеты	гидромеханики,	
	рабочих про-			прикладных	методов расчета	
	цессов в энер-			программ для	параметров	
	гетических ма-			решения задач	гидропневмоагрег	
1	шинах, аппа-			кавитационных	атов и	
	ратах и уста-			течений	характеристик	
	новках, мето-				гидропневмоприв	
	дов расчетного				одов	
	анализа объек-					
	тов профессии-					
	ональной дея-					
	тельности					
	способностью	ПК-4	основные этапы	производить	навыками расчета	
	использовать		решения	численные расчеты	элементов	
	знания теоре-		инженерных и	по нелинейным	гидравлических,	
	тических и		научных задач по	математическим	пневматических,	
2	экспериментал		проектированию и	моделям	вакуумных и	
	ьных методов		расчету	электрогидравличес	компрессорных	
	научных		гидропривода с	ких следящих	машин, аппаратов	
	исследований,		учетом	приводов с учетом	и установок с	
	принципов		кавитационных	кавитационных	учетом	

организации	течений	c	течений	кавитационных
научно-иссле-	использовани	ием		течений
довательской	современных	з ЭВМ		
деятельности	и п	акетов		
	прикладных			
	программ			

Содержание и структура дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц (108 часов). Трудоемкость дисциплины по видам работ:

Вид работы	Трудоемкость, час.
	1 семестр
	3 з.е. (108 час)
Лекции (Л)	10
Практические занятия (ПЗ)	12
Лабораторные работы (ЛР)	12
KCP	3
Курсовая работа (проект) (КР)	-
Расчетно-графическая работа (РГР)	-
Самостоятельная работа (проработка и повторение	62
лекционного материала и материала учебников и учебных	
пособий, подготовка к лабораторным и практическим	
занятиям, коллоквиумам, рубежному контролю и т.д.)	
Подготовка и сдача экзамена	-
Подготовка и сдача зачета	9
Вид итогового контроля (зачет, экзамен)	зачет

Содержание разделов и формы текущего контроля

				Соличес	тво час	OB	Литература,	Виды	
NC.	№ Наименование и содержание раздела		удиторн	ая рабо	та	CPC	рекомендуемая	интерактивных	
1/10			ПЗ	ЛР	КСР			студентам*	образовательных
								-	технологий**
	Кавитационные процессы в гидросистемах	6	8	8	3	32	14	P.6.1., №1	лекция-
	Неустановившиеся движения рабочих сред.							Р.6.2, №1, гл. 34	визуализация,
	Гидравлическое сопротивление трубы при							1	обучение на
	неустановившемся движении среды.								основе опыта,
	Приближенная модель турбулентного								проблемное
	неустановившегося потока в трубе.								обучение
	Математической моделирование								
	неустановившегося движения жидкой среды в								
	трубе. Аналитические и численные методы								
	расчета неустановившегося движения жидкой								
	среды в трубе.								
	Инерционный рост паровой каверны под								
	действием постоянного перепада давлений.								
	Зависимость чисел Вебера и Рейнольдса от								
1	параметров кавитационного пузырька.								
	Скорость роста сферического кавитационного								
	пузырька в идеальной и вязкой жидкости.								
	Влияние сил поверхностного натяжения на								
	скорость роста кавитационного пузырька.								
	Инерционный рост газонаполненной каверны в								
	переменном поле давления. Диаграмма								
	статической устойчивости газонаполненного								
	пузырька. Отношение времени начала								
	кавитации к времени нахождения струи с								
	струйной трубке при различных углах								
	конусности трубки. Зависимости								
	безразмерного радиуса и скорости,								
	достигаемого пузырьком в процессе его								
	расширения под действием переменных								
	растягивающих напряжений.								

								
	Замыкание каверны в неподвижной жидкости.							
	Уравнение движения границы пузырька.							
	Относительная скорость замыкания пузырька и							
	относительное давление на его границе в							
	зависимости от внешнего давления среды.							
	Влияние вязкости и сил поверхностного							
	натяжения на замыкание каверны в							
	неподвижной жидкости. Замыкание							
	поступательно движущейся каверны в							
	свободной затопленной струе жидкости.							
	Влияние близости границ на замыкание							
	каверны.							
	Струйно – кавитационный способ	4	4	4	30	14	P.6.1., №2	лекция-
	регулирования гидравлических рулевых							визуализация,
	машин							обучение на
	Схема СГРМ со струйно – кавитационным							основе опыта,
	регулированием							проблемное
	Струйный стабилизатор скорости. Анализ							обучение
	расчетов кавитационных течений в							
	высоконапорном струйном гидроусилителе.							
2	Характерные стадии развития кавитации.							
2	Математическая модель СГРМ со струйно -							
	кавитационным регулированием.							
	Система нелинейных дифференциальных							
	уравнений ЭГСП со струйным							
	гидрораспределителем. Математическая модель							
	привода со струйно – кавитационным							
	регулированием, теоретические основы и							
	методики его проектирования.							
	-							

Занятия, проводимые в интерактивной форме, составляют 100% от общего количества аудиторных часов.

Лабораторные работы

№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов
1	1	Кавитационный регулятор расхода	8
2	2	Струйно-кавитационная гидравлическая рулевая машина	4

Практические занятия (семинары)

No	$N_{\underline{0}}$	Тема	Кол-во
занятия	раздела	1 CMa	часов
1	1	Неустановившиеся движения рабочих сред.	2
2	1	Кавитационные течения в струйных элементах	4
3	1	Гидродинамика двухфазной жидкой среды	2
4	2	Кавитационный регулятор расхода	2
5	2	Струйно-кавитационная гидравлическая рулевая машина	2

Учебно-методическое и информационное обеспечение дисциплины (модуля)

Основная литература

- 1. Месропян А. В. Моделирование струйных гидравлических рулевых машин: Учебное пособие/ А. В. Месропян, В. А. Целищев. Уфа: Изд. Уфимск.гос. авиац. техн. ун-т, 2008. 196 с.
- 2. Целищев В. А. Гидравлический привод и гидроагрегаты/ Уфимск. гос. авиац. техн. ун-т. Уфа: УГАТУ, 2008. 282 с.
- 3. Петров П.В., Целищев В. А. Основы алгоритмического моделирования нелинейных гидромеханических устройств: Учебное пособие-Уфа: Изд. Уфимск .гос. авиац. техн. ун-та, 2012. 136 с.
- 4. Пархимович А.Ю., Целищев В. А. Пластинчатые насосы: Учебное пособие Уфа: Изд. Уфимск .гос. авиац. техн. ун-та, 2012. 109 с.

Дополнительная литература

1. Гимранов Э.Г., Целищев В. А. Нестационарные гидрогазодинамические эффекты в системах гидравлических и пневматических приводов/ Уфимск. гос. авиац. техн. ун-т. -Уфа: УГАТУ, 2008. -188 с.

Интернет-ресурсы (электронные учебно-методические издания, лицензионное программное обеспечение)

Каждый обучающийся (магистрант) в течение всего периода обучения обеспечен индивидуальным неограниченным доступом к следующим электронно-библиотечным системам (ЭБС «Лань» http://e.lanbook.com/, ЭБС Ассоциации «Электронное образование Республики Башкортостан» http://e-library.ufa-rb.ru, Консорциум аэрокосмических вузов России http://elsau.ru/, Электронная коллекция образовательных ресурсов УГАТУ http://e-library.ugatu.ac.ru/cgi-bin/zgate.exe?Init+ugatu-fulltxt.xml,simple-fulltxt.xsl+rus), содержащим все издания основной литературы, перечисленные в рабочих программах

дисциплин (модулей), практик, НИР сформированным на основании прямых договорных отношений с правообладателями.

Электронно-библиотечная система и электронная информационно-образовательная среда обеспечивают возможность индивидуального доступа для каждого обучающегося из любой точки, в которой имеется доступ к сети Интернет, как на территории университета, так и вне ее.

Обучающимся обеспечен доступ к электронным ресурсам и информационным справочным системам, перечисленным в таблице:

	Наименование ресурса	Объем фонда электрон ных ресурсов	Доступ	Реквизиты договоров с правообладателями
1.	Электронная база диссертаций РГБ	836206	Доступ с компьютеров читальных залов библиотеки, подключенных к ресурсу	Договор №1330/0208-14 от 02.12.2014
2.	СПС «Гарант»	6139026 экз.	Доступ с компьютеров читальных залов библиотеки, подключенных к ресурсу	ООО «Гарант-Регион, договор № 3/Б от 21.01.2013 (пролонгирован до 08.02.2016.)
3.	Научная электронная библиотека (eLIBRARY)* http://elibrary.ru/	9169 полнотекс товых журналов	С любого компьютера, имеющего выход в Интернет, после регистрации в НЭБ на площадке библиотеки УГАТУ	ООО «НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА». № 07-06/06 от 18.05.2006
4.	Научные полнотекстовые журналы издательства Springer* http://www.springerlink.com	1900 наимен. журнал.	С любого компьютера по сети УГАТУ, имеющего выход в Интернет	Доступ открыт по гранту РФФИ
5.	Научные полнотекстовые журналы издательства Taylor& Francis Group* http://www.tandfonline.com/	1800 наимен. журнал.	С любого компьютера по сети УГАТУ, имеющего выход в Интернет	В рамках Государственного контракта от 25.02.2014 г. №14.596.11.0002 между Министерством образования и науки и Государственной публичной научнотехнической библиотекой России (далее ГПНТБ России)

6.	Научные	650	С любого	В рамках
0.	полнотекстовые	наимен.	компьютера по	Государственного
	журналы издательства	жрнал.	сети УГАТУ,	контракта от 25.02.2014 г.
	Sage Publications*	жрпал.	имеющего выход в	№14.596.11.0002 между
	Sage I dolleations		Интернет	Министерством
			интернет	<u> </u>
				образования и науки и ГПНТБ России
7.	Научные	275	С любого	В рамках
'	полнотекстовые	наимен.	компьютера по	Государственного
	журналы издательства	журнало	сети УГАТУ,	контракта от 25.02.2014 г.
	Oxford University	В	имеющего выход в	№14.596.11.0002 между
	Press*http://www.oxfor	В	Интернет	Министерством
	djournals.org/		rintepher	
				ГПНТБ России
8.	Научныйполнотекстов	1 наимен.	С любого	В рамках
	ыйжурнал Science The	журнала.	компьютера по	Государственного
	American Association		сети УГАТУ,	контракта от 25.02.2014 г.
	for the Advancement of		имеющего выход в	№14.596.11.0002 между
	Science		Интернет	Министерством
	http://www.sciencemag.			образования и науки и
	org			ГПНТБ России
9.	Научный	1	С любого	В рамках
	полнотекстовый	наимен.	компьютера по	Государственного
	журнал Nature	журнала	сети УГАТУ,	контракта от 25.02.2014 г.
	компании Nature		имеющего выход в	№14.596.11.0002 между
	Publishing Group*		Интернет	Министерством
	http://www.nature.com/			образования и науки и
				ГПНТБ России
10	База данных GreenFile	5800	С любого	Доступ предоставлен
	компании EBSCO*	библиогра	компьютера по	компанией EBSCO
	http://www.greeninfoon	фич	сети УГАТУ,	российским
	<u>line.com</u>	записей,	имеющего выход в	организациям-участникам
		частично	Интернет	консорциума НЭЙКОН (в
		c		том числе УГАТУ - без
		полными		подписания
		текстами		лицензионного договора)
11	ЭБС «Лань»	41716	С любого	Договор ЕД-671/0208-14
	http://e.lanbook.com/		компьютера,	от 18.07.2014. Договор №
			имеющего выход в	ЕД -1217/0208-15 от
			Интернет, после	03.08.2015
			регистрации в ЭБС	
			по сети УГАТУ	
12			С любого	ЭБС создается в
	ЭБС Ассоциации		компьютера,	партнерстве с вузами РБ.
	«Электронное		имеющего выход в	Библиотека УГАТУ –
	образование	1225	Интернет, после	координатор проекта
	Республики		регистрации в	
	Башкортостан»		АБИС «Руслан» на	
	http://e-library.ufa-rb.ru		площадке	
			библиотеки	
1.5	n	700	УГАТУ	
13	Электронная	528	С любого	Свидетельство о регистрац.

коллекция	компьютера	ПО	№2012620618 от 22.06.2012
образовательных	сети УГАТУ		
ресурсов УГАТУ			
http://www.library.ugat			
u.ac.ru/cgi-			
bin/zgate.exe?Init+ugat			
u-fulltxt.xml,simple-			
<u>fulltxt.xsl+rus</u>			

Образовательные технологии

В процессе подготовки магистров по дисциплине Психология и педагогика используется совокупность методов и средств обучения, позволяющих осуществлять целенаправленное методическое руководство учебно-познавательной деятельностью магистрантов, в том числе на основе интеграции информационных и традиционных педагогических технологий.

В частности, предусмотрено использование следующих образовательных технологий:

- 1. Классическая лекция, предусматривающая систематическое, последовательное, монологическое изложение учебного материала.
- 2. Проблемная лекция, стимулирующая творчество, осуществляемая с подготовленной аудиторией (преимущественно во втором семестре изучения дисциплины).
- 3. Лекция-визуализация передача информации посредством схем, таблиц, рисунков, видеоматериалов, проводится по ключевым темам с комментариями.
- 4. Проблемное обучение, стимулирующее магистрантов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы, в форме письменных эссе различной тематики с их последующей защитой и обсуждением на семинарских занятиях.
- 5. Контекстное обучение мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением.
- 6. Обучение на основе опыта активизация познавательной деятельности студента за счет ассоциации и собственного опыта с предметом изучения,

При реализации настоящей рабочей программы предусматриваются интерактивные и активные формы проведения занятий, дискуссии по темам исследования и поставленным научным проблемам.

Материально-техническое обеспечение дисциплины

Для проведения *лекций-визуализаций* предусматривается использование специализированного мультимедийного оборудования и интерактивных досок smart board.

Адаптация рабочей программы для лиц с ОВЗ

Адаптированная программа разрабатывается при наличии заявления со стороны обучающегося (родителей, законных представителей) и медицинских показаний (рекомендациями психолого-медико-педагогической комиссии). Для инвалидов адаптированная образовательная программа разрабатывается в соответствии с индивидуальной программой реабилитации.