МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра электромеханики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

УЧЕБНОЙ ДИСЦИПЛИНЫ

«МЕТОДЫ И МОДЕЛИ В РАСЧЕТАХ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ И ЭЛЕКТРОТЕХНИЧЕСКИХ СИСТЕМ»

> Уровень подготовки магистратура

Направление подготовки (специальность) 13.04.02 Электроэнергетика и электротехника

Направленность подготовки (профиль, специализация) Электроэнергетика и электротехника

Квалификация (степень) выпускника магистр

Форма обучения очная

Уфа 2015

Исполнители:

доцент кафедры ЭМ Уразбахтина Н.Г.. _

Заведующий кафедрой ЭМ

Исмагилов Ф.Р.

Место дисциплины в структуре образовательной программы

Дисциплина <u>Методы и модели в расчетах электроэнергетических и электротехнических систем</u> является дисциплиной (базовой) части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.04.02 Электроэнергетика и электротехника утвержденного приказом Министерства образования и науки Российской Федерации от "11" декабря 2014 г. № 35143.

Целью освоения дисциплины является формирование систематизированных знаний о роли имитационного и схемотехнического моделирования при проектировании и исследовании электроэнергетических и электротехнических систем, изучение современных методов и моделей, а также технологий автоматизации выполнения исследовательских и проектных работ в этой области; формирование у магистрантов способности применять методы создания и анализа моделей, позволяющих прогнозировать свойства и поведение объектов профессиональной деятельности

Задачи:

формирование когнитивной основы в области математического моделирования, создание условий, обеспечивающих овладение магистрантами теоретических основ методов решения исследовательских задач и расчетов электроэнергетических и электротехнических систем путем математического моделирования;

формирование навыков решения типовых расчетных исследовательских и проектных задач электроэнергетических и электротехнических систем и их элементов с помощью современного проблемно-ориентированного и объектно-ориентированного программного обеспечения и современных интерфейсных средств ПЭВМ;

формирование устойчивого представления об использовании различных вариантов математического аппарата описания динамического поведения электромеханических систем и способах построения доступных, ориентированных на проблемного специалиста моделей таких систем;

формирования навыков построения структурных моделей типовых элементов и электроэнергетических и электротехнических систем с целью их использования в написании магистерской диссертации и дальнейшей практической деятельности.

Исхоляние компетеннии:

	ттеходящие компетенции.			
No	Компетенция	Код	Уровень освоения,	Название дисциплины
			определяемый этапом	(модуля), для которой
			формирования	данная компетенция
			компетенции	является входной
1.	Способностью применять	ПК-	базовый	Преддипломная практика,
	методы создания и анализа	8		НИР, ГИА
	моделей, позволяющих			
	прогнозировать свойства и			
	поведение объектов			
	профессиональной			
	деятельности			

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

	1 1	ı	ы обучения по диецина. Г		
№	Формируемые компетенции	Код	Знать	Уметь	Владеть
	Способностью	ПК-8	методологические	разрабатывать мате-	методами построе-
	применять мето-		и теоретические	матические модели	ния современных
	ды создания и		аспекты математичес-	электроэнергетичес-	структурных схем
	анализа моделей,		кого моделирования	ких электромехани-	для имитацион-
	позволяющих		электроэнергетичес-	ческих систем и их	ногомоделирова-
	прогнозировать		ких и электромехани-	элементов; выбирать	ния;
	свойства и пове-		ческих систем и их	и использовать	принципами по-
	дение объектов		элементов;	методы и средства	строения схемо-
	профессиональ-		основные виды мате-	реализации матема-	технических моде-
	ной деятельности		матических моделей,	тических моделей	лей;
1			используемых при	электроэнергетическ	навыками работы
			исследовании элект-	их, электромеханиче	с современной
			роэнергетических и	ских систем и их	компьютерной
			электромеханических	элементов;	техникой при
			систем и их	анализировать и	проведении
			элементов; методы	оценивать результаты	схемотехнического
			разработки математи-	математического	и имитационного
			ческих моделей; мето	моделирования	моделирования.
			ды и средства реализа		
			ции математических		
			моделей.		

Содержание и структура дисциплины (модуля) Общая трудоемкость дисциплины составляет <u>4</u> зачетных единиц (<u>144</u> часов).

Трудоемкость дисциплины по видам работ

Вид работы	Трудоемкость, час.
	<u>1</u> семестр
Лекции (Л)	20
Практические занятия (ПЗ)	-
Лабораторные работы (ЛР)	24
KCP	4
Курсовая проект работа (КР)	-
Расчетно - графическая работа (РГР)	-
Самостоятельная работа (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным и практическим занятиям, коллоквиумам, рубежному контролю и т.д.)	60
Подготовка и сдача экзамена	4
Подготовка и сдача зачета	_
Вид итогового контроля (зачет, экзамен)	Экз.

Содержание разделов и формы текущего контроля

No	Наименование и	Количество часов						Литература	Виды
	содержание раздела					CPC	,	интерактивн	
	1 1	Л	ПЗ	ЛР	КС		o	рекомендуе	ых
					P			мая	образователь
								студентам	ных
									технологий
					4			D (1) 1 1	(часы)
	Введение.	1	-	-	1	4	6	P.6.1, №1,	T
	Математические модели							введение; Р.6.1, №2,	
1.	простейших типовых элементов.							введение	
	SICHCHIOB.							P.6.2, №1,	
								гл.3.	
	Основные термины и	3	-		1	10	14	P.6.2, №1,	Проблемная
	определения. Концепция							гл.1, 2, 3	часть
	структурного								лекции(1).
	моделирования								
	электромеханических сис								
2	тем. Алгоритмический								
2.	базис структурного								
	моделирования электромеханических								
	систем. Функциональный								
	уровень алгоритмического								
	базиса структурных								
	моделей								
	Алгоритмические,	2	-		1	10	13	P.6.1, №1,	Интерактивн
	матрично-структурные							гл.4, 5	ое обучение
3.	модели динамических систем для имитации								(2).
	систем для имитации динамического поведения								
	эл. мех.систем								
	Структурные модели	4	-		1	10	159	P.6.1, №1,	Интерактивн
4.	элементов и подсистем							гл1	oe
	7.6					1.0	1.4	D (1)(2	обучение(4).
	Математическое	4	-			10	14	P.6.1, №2,	лекция-
	описание и							гл1	визуализация
	характеристики элементов электрической								(4).
	системы и узлов								
5	нагрузки. Представление								
	электрических нагрузок в								
	расчетах. Влияние режима								
	электрической системы на								
	работу нагрузки					4.0	4.5	D 6 1 322	
	Расчеты и анализ	2	-	4		10	16	P.6.1, №2,	Лекция-
6	статической							гл.4,5	визуализация
О	устойчивости								(2), работа в команде (4)
	электроэнергетической системы. Расчеты и анализ								команде (4)
L	Cheremon, 1 acterd in analists						<u> </u>		

	динамической								
	устойчивости								
	электроэнергетической								
	системы								
	Прикладные пакеты	4	-			6	5	P.6.1, №3	Интерактивн
	компьютерного							P.6.2, №2	ое обучение
	моделирования. Пакет								(4).
	Scicos/Scilab. Пакет ElCad.								
7	Пакет MathCad. Пакеты								
'	имитационного и								
	схемотехнического								
	моделирования								
	ElectronicsWorkbench,								
	MatLab.								
	Примеры		-				25		Работа в
	математических моделей								команде (20)
	электромеханических			4				P.6.1, №1,	
	систем.							гл7, 9	
	Математическая модель			4					
	асинхронной машины								
	Математическая модель			4					
	синхронной машины								
8.	Математическая модель			4					
	привода постоянного тока.								
	Имитационные модели			4					
	машино- вентильных								
	систем								
	Применение программы								
	ElCad для исследования								
	полей электрических								
	машин и трансформаторов								
	Итого	20		24	4	60	108		(42)

Итого | 20 | 24 | 4 | 60 | 108 | (42)

Занятия, проводимые в интерактивной форме, составляют _95__% от общего количества аудиторных часов по дисциплине

Лабораторные работы

	лаобраторные работы						
№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов				
1	4	Расчеты и анализ статической и динамической устойчивости электроэнергетической системы	4				
2	8	Исследование математической модели асинхронного двигателя	4				
3	8	Исследование математической модели синхронного двигателя и генератора	4				
4	8	Исследование математической модели привода постоянного тока.	4				
5	8	Имитационное и схемотехническое моделирование машиновентильных систем и их элементов	4				

Ī		0	Применение	программы	ElCad	для	исследования	полей	4
	6	8	электрических	к машин и тра	нсформа	торов			4

Учебно-методическое и информационное обеспечение дисциплины (модуля) Основная литература

Шабад В. К. Электромеханические переходные процессы в электроэнергетических системах : [учебное пособие для студентов вузов, обучающихся по специальностям "Электрические станции" и "Электроснабжение" направления подготовки "Электроэнергетика" и направлению подготовки "Электроэнергетика и электротехника" (модуль "Электроэнергетика")] / В. К. Шабад - Москва: Академия, 2013 - 192 с.

Дополнительная литература

- 1. Зарубин В.С. Математическое моделирование в технике: [Электронный ресурс]: учебное пособие для вузов.— Adobe Reader.http://www.lib.tpu.ru/fulltext2/m/2011/m164.pdf
- 2. Уразбахтина Н. Г. Моделирование элементов электромеханических систем автономных объектов [Электронный ресурс] / Н. Г. Уразбахтина, Л. Э. Рогинская, А. В. Стыскин; УГАТУ Уфа: УГАТУ, 2008 1 электрон.опт. диск (CD-ROM)
- 3. Кудрявцев Е. М. Mathcad 11 [Электронный ресурс]: Полное руководство по русской версии / Е. М. Кудрявцев М.: ДМК ПРЕСС, 2009 592 с.

Методические издания к лабораторным работам

- 1. Лабораторный практикум по дисциплине «Проектирование электрооборудования ЛА», «Имитационное и схемотехническое моделирование электромеханических систем ЭЛА» /Уфимск. гос. авиац. техн. ун-т; Сост. Н.Г.Уразбахтина.— Уфа, 2011.—35с.
- 2. Лабораторный практикум по дисциплине «Методы и модели в расчетах электроэнергетических и электротехнических систем»/ кафедральное издание. Сост. Н.Г.Уразбахтина.— Уфа, 2015.—50с.

Интернет-ресурсы (электронные учебно-методические издания, лицензионное программное обеспечение)

На сайте библиотеки УГАТУ http://library.ugatu.ac.ru/ в разделе «Информационные ресурсы», подраздел «Доступ к БД» размещены ссылки на интернет-ресурсы согласно пп. 6.1 и 6.2 – основная и дополнительная литература.

Образовательные технологии

Согласно п. 6.9-6.10 ФГОС ВОпри реализации образовательной программы не допускается применение электронного обучения и дистанционных образовательных технологий.

Материально-техническое обеспечение дисциплины

Перечень установленного оборудования

Оборудование	Тип	Количество
Системныйблок	ASUS P8H61-MX R 2.0/PCI-E/CPU Intel Core	8
	i3-2120/DDR-III DIMM 4 Gb/HDD 1 TB SATA-	
	II/CDRW	
	2007	•
Монитор	20" BenQ G2055	8
Клавиатура	Genius	8
Мышь	Genius	8
Интерактивная доска	Интерактивная система 87" ActivBoard 387	1
_	ProMountDPL на раздельном настенном	
	креплении, ПО ActivIspire	
Др. оборудование		

2. Перечень имеющегося программного обеспечения

Наименование	Тип и номер лицензии	Примечания
программного		
продукта		
Компас 3DV13	Коммерческая лицензия КК-1101067	Программный пакет
		предназначенный для разработки
		конструкторской документации и
		прочностных расчетов узлов
		авиационных агрегатов
Matlab	Коммерческая лицензия №726128,	Пакет математических расчетов и
	№726130	моделирования
		электромеханических
		преобразователей энергии
		объектов авиационной
		промышленности
Elcut	Академическая лицензия	Программный пакет
		предназначенный для
		моделирования и расчетов
		тепловых и электромагнитных
		процессов в авиационной и
		космической технике
Инструменты	Бессрочныеучебныелицензии; С++	Программные пакеты,
для разработки	Compiler for Windows/Linux (30), Fortran	предназначенные для разработки
параллельных	Compiler for Linux (15),VTune TM	компьютерных приложений,
программ	Performance Analyzer for Windows / Linux	используемых при
Intel	(30), Thread Checker for Windows/Linux	проектировании, наладке и
	(30), Thread Profiler for Windows (15), MPI	управлении различными узлами и
	Library for Linux (15), Math Kernel Library	устройствами.
	for Windows/Linux (30), Math Kernel	
	Library Cluster Edition for Windows/Linux	
	(30), Cluster OpenMP* for Intel® C++	
	Compiler for Linux (15). Cluster OpenMP*	
	for Intel® Fortran Compiler for	
	Linux. Бессрочные академические лицензии	
	Intel MPI Library (2)	

Адаптация рабочей программы для лиц с ОВЗ

Данное направление подготовки входит в Перечень специальностей и направлений подготовки, при приеме на обучение по которым поступающие проходят обязательные предварительные медицинские осмотры (обследования) в порядке, установленном при заключении трудового договора или служебного контракта по соответствующей должности или специальности, утвержденный постановлением Правительства Российской Федерации от 14 августа 2013 г. № 697.На основании этого на данное направление подготовки лица, требующие индивидуальных условий обучения, не принимаются.