МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра высокопроизводительных вычислительных технологий и систем

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«СПЕЦИАЛЬНЫЕ МЕТОДЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ»

Уровень подготовки высшее образование – магистратура

Направление подготовки (специальность) 01.04.02 Прикладная математика и информатика

Направленность подготовки (профиль, специализация) Математическое моделирование и вычислительная математика

Квалификация (степень) выпускника магистр

Форма обучения очная

Исполнитель Газизов Р.К.

Заведующий кафедрой высокопроизводительных вычислительных технологий и систем

Газизов Р.К.

Место дисциплины в структуре образовательной программы

Дисциплина «Специальные методы дифференциальных уравнений» является дисциплиной вариативной части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 01.04.02 Прикладная математика и информатика, утвержденного приказом Министерства образования и науки Российской Федерации от 28.08.2015 г. № 911.

Целью освоения дисциплины является формирование теоретических знаний в области обыкновенных дифференциальных уравнений и уравнений в частных производных и практических навыков исследования математических моделей из различных областей науки как классическими, так и новыми аналитическими методами, выводимыми из группового анализа

Задачи:

- углубление и систематизация знаний в области интегрирования обыкновенных дифференциальных уравнений и уравнений в частных производных;
- приобретение практических навыков решения обыкновенных дифференциальных уравнений, уравнений в частных производных и систем методами группового анализа;
- формирование умений и навыков математического описания прикладных задач и научного исследования моделей.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

No	Формируемые	Код	Знать	Уметь	Владеть
	компетенции				
1	Способность разра-	ПК-2	- основные опре-	- находить до-	- навыками ана-
	батывать и анализи-		деления и утвер-	пускаемые пре-	лиза и каче-
	ровать концептуаль-		ждения теории	образования для	ственного ис-
	ные и теоретические		групп Ли преоб-	заданных диф-	следования сим-
	модели решаемых		разований и ал-	ференциальных	метрийных
	научных проблем и		гебр Ли,	уравнений,	свойств диффе-
	задач		- основные алго-	обыкновенных и	ренциальных
			ритмы исследо-	в частных произ-	уравнений,
			вания симмет-	водных,	- навыками ис-
			рийных свойств	- использовать	пользования па-
			дифференциаль-	симметрии для	кетов компью-
			ных уравнений,	интегрирования	терной алгебры
			- основные алго-	обыкновенных	для построения
			ритмы построе-	дифференциаль-	симметрий диф-
			ния решений	ных уравнений,	ференциальных
			дифференциаль-	- использовать	уравнений и их
			ных уравнений с	симметрии для	использования,
			использованием	построения ин-	- навыками ис-
			их симметрий-	вариантных ре-	следования ин-
			ных свойств,	шений диффе-	тегрируемости
			- основные алго-	ренциальных	дифференциаль-
			ритмы построе-	уравнений,	ных уравнений,
			ния и использо-	- применять тео-	- навыками по-
			вания законов	рему Э. Нетер	строения и ис-

	сохранения для дифференциальных уравнений.	для построения законов сохранения дифференциальных уравне-	следования ре- шений и законов сохранения диф- ференциальных
		ний.	уравнений.

Содержание разделов дисциплины

No	Наименование и содержание раздела					
1	Однопараметрические группы преобразований и их генераторы.					
	Группы точечных преобразований, инфинитезимальный подход, теорема С. Ли, приме-					
	ры групп преобразований; инварианты и инвариантные уравнения, теорема о представ-					
	лении инвариантного уравнения; подобие групп преобразований.					
2	Группы преобразований, допускаемые дифференциальными уравнениями.					
	Продолжение преобразований на производные, инвариантность дифференциальных					
	уравнений, примеры построения симметрий дифференциальных уравнений; свойство					
	решений определяющего уравнения, алгебра Ли операторов, ее свойства; многопара-					
	метрические группы преобразований.					
3	Использование симметрийных свойств дифференциальных уравнений					
	для построения решений.					
	Использование допускаемых преобразований для размножения решений; инвариантно-					
	групповые решения, теорема о редукции; оптимальные системы подалгебр; решение си-					
	стем линейных однородных уравнений и построение инвариантов многопараметриче-					
	ских групп преобразований, принцип инвариантности при решении задачи Коши.					
4	Задачи групповой классификации дифференциальных уравнений.					
	Группы преобразований эквивалентности, классифицирующие соотношения, метод					
	предварительной групповой классификации дифференциальных уравнений.					
5	Интегрирование обыкновенных дифференциальных уравнений					
	с использованием симметрий.					
	Метод последовательного понижения порядка, инвариантное дифференцирование; ин-					
	тегрирующий множитель, метод Ли интегрирования уравнений второго порядка, четыре					
	канонических вида уравнений второго порядка, допускающих две симметрии.					
6	Законы сохранения.					
	Теорема Нетер в вариационных задачах. Метод нелинейной самосопряженности.					

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.