МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра высокопроизводительных вычислительных технологий и систем

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«МАТЕМАТИЧЕСКИЕ МОДЕЛИ СЛУЧАЙНЫХ ПРОЦЕССОВ»

Уровень подготовки высшее образование – магистратура

Направление подготовки (специальность) 01.04.02 Прикладная математика и информатика

Направленность подготовки (профиль, специализация) Математическое моделирование и вычислительная математика

Квалификация (степень) выпускника магистр

Форма обучения очная

Исполнитель Лакман И.А.

Заведующий кафедрой высокопроизводительных вычислительных технологий и систем

Газизов Р.К.

Место дисциплины в структуре образовательной программы

Дисциплина «Математические модели случайных процессов» является дисциплиной базовой части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 01.04.02 Прикладная математика и информатика, утвержденного приказом Министерства образования и науки Российской Федерации от 28.08.2015 г. № 911.

Целью освоения дисциплины является формирование у будущих магистров в области прикладной математики и вычислительной техники теоретических знаний и практических навыков для решения научно-исследовательских и прикладных задач связанных с научным предвидением и предсказанием развития процессов и явлений средствами математического моделирования случайных процессов.

Задачи:

- обучить магистрантов комплексному анализу ретроспективы процесса для построения качественного прогноза на основе методов математического моделирования случайных процессов;
- научить строить качественные прогнозы, на основе верной идентификации случайного процесса, лежащего в основе временного ряда;
- приучить проверять построенные прогнозные модели на адекватность;
- научить определять волатильность показателей на основе моделей условной гетероскедастичности;
- привить навыки обязательной селекции прогнозных моделей на основе информационных и других критериев.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

No	Формируемые компетенции	Код	Знать	Уметь	Владеть
1	Способность раз-	ПК-2	- типы процессов,	- определять	- навыками про-
	рабатывать и ана-		представленные	структуру вре-	ведения анализа
	лизировать кон-		временными ря-	менного ряда на	внутренней
	цептуальные и тео-		дами (TSP, DSP);	основе анализа	структуры раз-
	ретические модели		- детерминиро-	коррелограмм	личных процес-
	решаемых научных		ванные состав-	ACF и PACF;	сов, представлен-
	проблем и задач		ляющие времен-	- определять ти-	ных временными
			ного ряда и мето-	пы процессов,	рядами;
			ды очищения от	представленные	- построения
			них случайных	временными ря-	адекватных мо-
			процессов;	дами на основе	делей ARIMA,
			- тесты на еди-	различных	SARIMA, ARCH /
			ничные корни и	процедур	GARCH;
			их модификации;	(например, с ис-	- навыками рабо-
			- модели ARIMA	пользованием пя-	ты с программ-
			/ SARIMA;	тиэтапной проце-	ными средствами
			- тесты на струк-	дуры применения	статистического
			турные измене-	теста ADF);	моделирования;
			ния временных	- идентифициро-	- навыками по-

рядов; вать порядки, строения каче-- модели с условпроводить селекственных прогноной гетероцию, оценку и зов с использовадиагностику москедастичностью; нием методов ма-- теорию коинтеделей ARIMA, тематического грации случай-SARIMA; моделирования - идентифицироных процессов; случайных про-- схему обобщенвать порядки, цессов для корного прогнозиропроводить селекректных принявания на основе цию, оценку и тий управленчедиагностику момоделирования ских решений; случайных проделей ARCH / - навыками опре-GARCH, рассчицессов и методы деления взаимотывать волатильоценки прогносвязи временных стической ценноность; рядов на основе -строить научно сти модели. теории коинтеобоснованные грации и тестов прогнозы, провона причинность, дить корректную для корректных интерпретацию принятий управрезультатов на ленческих решений. основе статистического моделирования динамических процес-- исследовать взаимосвязь случайных процессов на основе теории коинтеграции.

Содержание разделов дисциплины

$N_{\underline{0}}$	Наименование и содержание раздела				
1	Типы случайных процессов, представленные временными рядами.				
	Понятие детерминированного тренда и процесса случайного блуждания, в том числе с				
	дрейфом. Стационарность случайных стохастических процессов в широком и узком				
	смысле. Разделение DS и TS процессов. Методы определения детерминированного				
	тренда в структуре временного ряда. Метод выделения трендовой составляющей во				
	временном ряду на основе подбора гладких функций. Сезонная компонента и методы				
	ее определения. Интегрируемые стохастические процессы, порядок интегрируемости.				
	Тест Дики-Фуллера. Определение порядка интегрируемости. Расширенный тест Дики-				
	Фуллера. Подход Доладо-Дженкинсона-Сосвила-Риверо. Тест на сезонную интегриру-				
	емость Дики, Хаза, Фуллера. Тест Филиппса-Перрона. Процесс белого шума. Теорема				
	разложения Вольда.				
2	Модели нестационарных случайных процессов ARIMA/SARIMA.				
	Определение авторегрессионных (AR) процессов. Модели скользящих средних (MA).				
	Авторегрессионые (ARMA) модели скользящей средней. Автокорреляционная функ-				
	ция (АКФ) и ее свойства. Частная автокорреляционная функция (ЧАКФ) и ее свойства.				
	Критерий для ARMA процессов Люнга-Бокса. Идентификация модели ARMA по кор-				
	релограммам АКФ и ЧАКФ. Проверка адекватности построенной ARMA-модели.				
	ARIMA-модели. Подход Бокса-Дженкинса. Идентификация моделей. Сезонные				

АRIMA-модели (SA-RIMA). Селекция моделей на основе информационных критериев. Виды структурных изменений временных рядов (скачки, изломы). Тесты на структурные изменения временных рядов: Тест Перрона, Тест Чоу с заранее известной точкой излома, Тест Рамсея, Тест Квандта-Эндрюса. Методы избавления от структурных изломов: подход Гуаратти.

3 Модели условной гетероскедастичности.

Замечания Мандельброта о кластеризации волатильности. Введение понятия условной и безусловной дисперсии. Определение модели авторегрессионной условной гетероскедастичности (ARCH-модели). Идентификация ARCH-модели (определение порядка авторегрессии условной дисперсии) на основе $\chi 2$ -критерия. Спецификация модели: определение наличия ARCH-эффектов на основе теста Уайта. Оценка методом максимального правдоподобия ARCH-модели, проверка достоверности полученных коэффициентов модели. Обобщение ARCH-модели – GARCH-модель. Пример применения GARCH-модели для предсказания долларовых активов в евро. Применение волатильности GARCH-модели для определения годовой волатильности в теории финансов. Идентификация GARCH-модели (определение порядков модели) на основе критерия Люнга-Бокса. Оценка методом максимального правдоподобия GARCH-модели, проверка достоверности полученных коэффициентов модели.

4 Исследование взаимосвязи двух случайных процессов. Обобщенное прогнозирование.

Определение взаимосвязи временных рядов на основе теории коинтеграции, причинность по Гренджеру, коинтеграционное соотношение, тест Ингла-Гренджера. Типы динамических эконометрических моделей. Схема составления прогнозных моделей. Информационная база прогнозирования. Прогнозирование на основе динамических эконометрических моделей. Доверительные интервалы в прогнозах. Проверка прогностической ценности прогнозов

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.