МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра МиФМ

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Основы механики и механические свойства твердых тел

Направление 22.03.01 Материаловедение и технологии материалов

<u>Направленность (профиль): 1) Материаловедение и технология новых материалов, 2)Неразрушающий контроль</u>

Квалификация (степень) выпускника Магистр

Форма обучения Очная

Уфа 2015

Исполнители:			
к.т.н, доцент	Сиренко А.А.		
	должность		
Заведующий кафедрой	Зарипов Н.Г		

Место дисциплины в структуре образовательной программы

Дисциплина «Основы механики и механические свойства твердых тел» является дисциплиной <u>базовой</u> части профессионального цикла.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) "Об утверждении федерального государственного образовательного стандарта высшего образования по направлению подготовки 22.04.01 Материаловедение и технологии материалов (уровень магистратуры), утвержденного приказом Министерства образования и науки Российской Федерации от "28" 08 2015 г. № 907.

Целью освоения дисциплины является: получение теоретических знаний о физической природе пластической деформации, разрушения и высокопрочного состояния металлов и сплавов, получение базовых знаний о применении различных методов механических испытаний.

Задачи:

- Сформировать знания о назначении, составе, взаимосвязи структуры и свойств современных материалов.
- Изучить основы физической теории прочности и пластичности, ознакомить с областями применения перспективных конструкционных и функциональных материалов в изделиях и технологиях различных отраслей науки и производства.
- Ознакомить с методиками проведения механических испытаний.
- Дать теоретически обоснованные и экспериментально подтвержденные представления о процессах пластической деформации и разрушения металлов и сплавов.
- Научить студентов применять полученные знания и умения в профессиональной деятельности, развитие практических навыков и необходимых компетенций в целях обеспечения востребованности таких специалистов на рынке труда.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

№	Формируемые компетенции	Код	Знать	Уметь	Владеть
1	готовность выполнять комплексные исследования и испытания при изучении материалов и изделий, включая стандартные и сертификационные, процессов их производства, обработки и модификации	ПК-5	Закономерности, описывающие связи между параметрами механических свойств и параметрами эксплуатационных, технологических и инженерных свойств. Основные характеристики эксплуатационных свойств материалов.	Анализировать результаты механических испытаний.	Навыками анализа результатов испытаний.

3. Содержание разделов дисциплины

	Наименование и содержание раздела
1	Механические испытания . Общие понятия и определения. Напряжения, тензор напряжений, схемы определения составляющих полного напряжения, истинные и условные напряжения. Схемы напряженно-деформированного состояния, их жесткость. Классификация и условия подобия механических испытаний. Машины и оборудование для механических испытаний.
2	Пластическая деформация . Деформационное упрочнение как результат кооперированного движения и взаимодействия дефектов кристаллического строения. Кристаллографическая природа пластической деформации. Анизотропия свойств, критическое приведенное напряжение сдвига. Влияние различных переменных параметров на критическое приведенное напряжение сдвига.
3	Физические представления о разрушении материалов. Классификация видов разрушения. Критерии Гриффитса и Ирвина. Модели зарождения и роста микротрещин. Механизмы роста макротрещин. Вязкое разрушение. Хрупкое разрушение. Теория хрупковязкого перехода. Классификация изломов. Фрактография.
4	Механические свойства при статических испытаниях. Испытания на растяжение, первичные диаграммы растяжения, критические точки, истинные напряжения и истинные деформации. Испытания на сжатие, изгиб, кручение. Твердость, твердость по Бринеллю, Виккерсу, Роквеллу микротвердость, нанотвердость. Коэффициенты интенсивности напряжений. Вязкость разрушения, трещиностойкость. Докритический рост трещины. R-кривая. Инвариантный Ј-интервал и его применение для оценки трещиностойкости.
5	Механические свойства при высокоскоростном нагружении. Особенность пластической деформации и разрушения при динамическом нагружении. Динамические испытания на изгиб образцов с надрезом.
6	Механические свойства при циклическом нагружении. Усталостные процессы в металлах и сплавах. Основные термины и определения. Малоцикловая и многоцикловая усталость. Процессы, сопровождающие накопление усталостных повреждений. Полная вероятностная диаграмма усталости. Кинетическая диаграмма усталостного разрушения. Особенность пластической деформации и разрушения при усталости.
7	Механические свойства при высокотемпературном нагружении. Явление ползучести, испытания на ползучесть, кривые ползучести. Зернограничное проскальзывание, сверхпластичность, определение критериев сверхпластической деформации. Испытания на длительную прочность. И спытания на релаксацию напряжений. Влияние легирования и структуры на характеристики жаропрочности
8	Высокопрочное состояние сплавов. Механизмы упрочнения. Упрочнение атмосферами примесей и легирующих элементов. Теория блокировки дислокаций. Теория упрочнения твердых растворов замещения. Деформационное упрочнение. Дисперсионное упрочнение. Взаимодействие дислокаций с выделениями. Механизмы упрочнения когерентными и некогерентными частицами. Суперпозиция механизмов упрочнения. Эффективность различных механизмов упрочнения при повышенных температурах.
9	Конструкционная прочность металлов и сплавов. Конструкционная прочность материалов и критерии ее оценки. Надежность, как свойство материала противостоять хрупкому разрушению. Долговечность, как свойство материала сопротивляться развитию постепенного разрушения. Живучесть (СРТУ), как критерий надежности материала. Износостойкость. Основные механизмы повышения конструкционной прочности.

Подробное содержание дисциплины, структура учебных занятий, трудоёмкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.