МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА»

Уровень подготовки высшее образование –бакалавриат

Направление подготовки 22.03.01 Материаловедение и технологии материалов

Направленность подготовки (профиль)
Материаловедение и технология новых материалов (наименование профиля подготовки, специализации)

Квалификация (степень) выпускника бакалавр Форма обучения очная

Уфа 2015

Исполнители:	доцент		Крымская Т.М.	
	должность	подпись	расшифровка подписи	-
Заведующий кафед	црой материаловед	ения и физики металлов	3	
			Зарипов Н.Г.	
наименование кафедры	лична	я подпись	расшифровка подпис	и

Место дисциплины в структуре образовательной программы

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 22.03.01 Материаловедение и технологии материалов, утвержденного приказом Министерства образования и науки Российской Федерации от "12"ноября 2015 г. № 1331.

Дисциплина "Электротехника и электроника" является дисциплиной: согласно ФГОС ВПО базовой части профессионального цикла; согласно ФГОС ВО вариативной части (Б1.В.ОД.5).

Целью освоения дисциплины являются

- формирование у студентов системы знаний в области теории электромагнитных процессов, а также создание основы электротехнического образования и базы для восприятия и изучения совокупности средств, способов и методов человеческой деятельности, направленных на исследование, разработку и применение электротехнических и электронных устройств и систем, электрических машин и приборов;
- обеспечение теоретической и практической подготовки бакалавра в области электротехники и электроники; развитие технического мышления; приобретение знаний, необходимых для изучения специальных дисциплин, связанных с эксплуатацией электротехнического оборудования; овладение знаниями, умениями и навыками, необходимыми для квалифицированного использования электротехнических и электронных устройств с целью реализации производственных процессов.

Задачи:

- Сформировать знания об основных законах теории электрических и магнитных цепей.
- Изучить методы расчета электротехнических и электронных устройств.
- Сформировать представление студентов о современных компьютерных технологиях, используемых для моделирования электротехнических и электронных систем.
- Изучить особенности использования законов электротехники и знаний характеристик электронных приборов при решении различных инженерных задач.
- Изучить правила техники безопасности при работе с электротехническими установками и электронными устройствами.

Матрица соответствия компетенций ФГОС ВПО компетенциям ФГОС ВО представлена в таблице:

Компетенции ФГОС ВПО	Компетенции ФГОС ВО
Владение базовыми знаниями математических и	Способность использовать в
естественнонаучных дисциплин и дисциплин	исследованиях и расчетах знания о
общепрофессионального цикла в объеме, необходимом	методах исследования, анализа,
для использования в профессиональной деятельности	диагностики и моделирования свойств
основных законов соответствующих наук,	веществ (материалов), физических и
разработанных в них подходов, методов и результатов	химических процессов, протекающих в
математического анализа и моделирования,	материалах при их получении, обработке
теоретического и экспериментального исследования	и модификации (ПК-4);
(ΠK-1);	
использование современных информационно-	способность использовать на практике
коммуникационных технологий, глобальных	современные представления о влиянии
информационных ресурсов в научно-исследовательско	микро- и нано- структуры на свойства
и расчетно-аналитической деятельности в области	материалов, их взаимодействии с
материаловедения и технологии материалов (ПК-4)	окружающей средой, полями, частицами
	и излучениями (ПК-6)

Описание логической и содержательно-методической взаимосвязи с другими частями образовательной программы (дисциплинами, модулями, практиками)

Входные компетенции:

№	Компетенция	Код	Уровень освоения, определяемый этапом формирования	Название дисциплины (модуля), сформировавшего данную компетенцию
1	Способность сочетать теорию и практику для решения инженерных задач	ОПК - 4	компетенции* базовый уровень: позволяет решать типовые задачи, принимать профессиональные и управленческие решения по известным алгоритмам, правилам и методикам	Модуль Математика, Физика, Инноватика, Производственная практика, Государственная итоговая аттестация

Исходящие компетенции:

Nº	Компетенция	Код	Уровень освоения, определяемый этапом формирования компетенции	Название дисциплины (модуля), для которой данная компетенция является входной
1	Способность использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств веществ (материалов), физических и химических процессов, протекающих в материалах при их получении, обработке и модификации	ПК - 4	базовый уровень	Перспективные материалы и технологии Разработка проектнотехнической документации Производственная практика Преддипломная практика НИР2
2	Способность использовать на практике современные представления о влиянии микро- и нано- структуры на свойства материалов, их взаимодействии с окружающей средой, полями, частицами и излучениями	ПК - 6	базовый уровень	Метрология и стандартизация Основы механики и механические свойства твердых тел Методология выбора материалов в машиностроении Производственная практика Преддипломная практика НИР

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

KUMI	петенции.	1	1	T	
№	Формируемые компетенции	Код	Знать	Уметь	Владеть
	Способность	ПК - 4	основные разделы	моделировать и	навыками работы с
	использовать в		электротехники и	рассчитывать	нормативной и
	исследованиях		электроники, роль и	электрические и	технической
	и расчетах		место дисциплины в	магнитные цепи	документацией; методами
	знания о		современной технике и	электротехнических	обработки результатов
	методах		технологии; способы	систем;	экспериментов;
	исследования,		получения,	пользоваться	принципами создания
	анализа,		преобразования и	инженерными	физических моделей
	диагностики и		применения	прикладными	электротехнических и
	моделирования		электроэнергии;	пакетами программ	электронных устройств и
	свойств		методы расчета	для ЭВМ;	их экспериментального
1	веществ		электрических и	пользоваться	исследования; навыками
	(материалов),		магнитных цепей в	правилами	использования
	физических и		различных режимах;	безопасности при	прикладных программ для
	химических		методы анализа,	работе на	моделирования
	процессов,		моделирования и	электротехнических	электрических и
	протекающих в		расчета процессов и	установках, а также	магнитных цепей и
	материалах при		режимов работы	при работе с	электронных устройств, а
	их получении,		электротехнических	электронными	также работы с
	обработке и		установок	устройствами	вычислительной техникой
	модификации				для решения
					рассматриваемого круга
	<u> </u>	TILC C	1		задач
	Способность	ПК - 6	основы физики	применять	методами обработки
	использовать		явлений в	аналитические и	результатов эксперимента
	на практике		электрических и	численные методы	с электротехническими
	современные		магнитных цепях;	для расчета	устройствами и
	представления		физические основы	электрических и	электронными цепями
	о влиянии		электроники;	магнитных цепей;	
	микро- и нано-		компоненты	рассчитывать	
2	структуры на свойства		электронной техники, схемотехнику	параметры	
2			•	полупроводниковых	
	материалов, их взаимодействи		аналоговых и цифровых устройств,	и электронных приборов; ставить и	
	и с		архитектуру	решать	
	и с окружающей		микропроцессорных	схемотехнические	
	средой,		систем	задачи с учетом	
	полями,		OHO I CIVI	влияния различных	
	частицами и			факторов	
	излучениями			фикторов	
	излучениями				

Содержание и структура дисциплины (модуля)

No	Наименование и содержание раздела			
	Введение			
1	Предмет и задачи курса, его построение, связь со смежными дисциплинами, место в			
1	системе электротехнического образования бакалавра. Электрическое и магнитное поля как			
	две стороны единого электромагнитного поля. Электрические и магнитные цепи.			
	Основные законы теории цепей			
2	Основные понятия и определения. Идеализированные элементы и их математические			
	модели, свойства и характеристики. Основные законы электрических цепей. Основные			
	параметры и законы магнитных цепей.			

3	Методы анализа линейных резистивных цепей постоянного тока Анализ резистивных цепей методом эквивалентных преобразований. Расчет сложных цепей постоянного тока с помощью законов Кирхгофа, методами контурных токов и междуузлового напряжения, а также методом эквивалентного генератора.			
4	Анализ установившегося режима в цепях синусоидального тока Источники синусоидальных ЭДС и токов. Изображение синусоидальных функций времени комплексными числами. Векторные диаграммы токов и напряжений. Комплексные сопротивления и проводимости. Символический метод расчета электрических цепей. Активная, реактивная и полная мощности.			
5	Частотные характеристики цепей Резонанс при последовательном и параллельном соединениях R, L, C элементов электрической цепи. Частотные характеристики последовательного и параллельного соединений R, L, С элементов.			
6	<i>Трехфазные цепи</i> Основные понятия и определения. Трехфазная система ЭДС. Расчеты трехфазных цепей. Мощности трехфазных цепей.			
7	Анализ переходных процессов во временной области Причины возникновения переходного процесса. Законы коммутации. Переходные процессы в цепях с одним и несколькими накопителями энергии. Классический и операторный методы расчета переходных процессов.			
8	Нелинейные цепи. Магнитные цепи Свойства нелинейных цепей. Классификация нелинейных элементов. Расчет резистивных нелинейных цепей при последовательном, параллельном и смешанном соединениях элементов. Расчет магнитных цепей. Цепи с нелинейными индуктивностями - катушками с ферромагнитным сердечником, эквивалентные параметры и схемы замещения катушки с ферромагнитным сердечником.			
9	Электромагнитные устройства и электрические машины Основные свойства и методы анализа трансформаторов. Электрические генераторы и двигатели постоянного тока. Вращающееся магнитное поле. Трехфазные асинхронные двигатели. Синхронные генераторы и двигатели.			
10	Электроника Электроника Элементная база современных электронных устройств. Аналоговая электроника (источники вторичного электропитания, усилительные каскады, автогенераторы, операционные усилители). Цифровая электроника (логические элементы, триггеры, мультивибраторы, дискретные элементы вычислительной техники). Микропроцессорная техника			
11	Заключение Общие выводы по содержанию дисциплины			

Занятия, проводимые в интерактивной форме, составляют 62% от общего количества аудиторных часов по дисциплине "Электротехника и электроника".

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины