МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Материаловедения и физики металлов»

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫУЧЕБНОЙ ДИСЦИПЛИНЫ
«МИКРОСТРУКТУРНЫЙ ДИЗАЙН ПЕРСПЕКТИВНЫХ МАТЕРИАЛОВ»

Уровень подготовки <u>бакалавриат</u>

Направление подготовки 22.03.01 — Материаловедение и технологии материалов

Направленность подготовки (профиль) Материаловедение и технологии новых материалов

Квалификация (степень) выпускника <u>бакалавр</u>

Форма обучения очная

Уфа 2015

Исполнитель: профессор	<u> Астанин В</u> .В		
Заведующий кафедрой:	Зарипов Н.Г.		

Место дисциплины в структуре образовательной программы

Дисциплина «Микроструктурный дизайн перспективных материалов» является дисциплиной вариативной части Учебного плана.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 22.03.01 - Материаловедение и технологии материалов, утвержденного приказом Министерства образования и науки Российской Федерации от "12" ноября 2015 г. № 1331.

Цель освоения дисциплины: Ознакомить студентов с возможностями повышения свойств материалов путем создания специальных структур и технологическими приемами реализации этих возможностей. Дисциплина дает основу компетенции **ПК-4** профессиональной подготовки специалистов машиностроительного профиля.

Задачи:

- изучить общие принципы создания специальных структур материалов и композитов в зависимости от их назначения и условий эксплуатации;
- знать классификацию материалов с особой структурой и композитов, природу их свойств и обрасти применения;
- освоить основные технологические приемы получения специальных материалов и композитов, а также методы исследования их структуры и свойств.

Входные компетенции:

No	Компетенция	Код	Уровень	Название дисциплины
	100,111.01.01.111.111	110Д	освоения,	(модуля),
			определяемый	сформировавшего
			этапом	данную компетенцию
				данную компетенцию
			формирования компетенции*	
	Г	OHIC 2		Δ V
2	Готовность применять	ОПК-3	Пороговый	Физика, Химия,
	фундаментальные			Математика
	математические,			Диффузия и фазовые
	естественнонаучные и общеинженерные знания в			превращения в металлах
	профессиональной			и сплавах
	деятельности			Основы термодинамики
	деятельности			в материаловедении
3	Способность сочетать теорию	ОПК-4	Пороговый	Физика, Химия,
	и практику для решения		1	Математика,
	инженерных задач			Кристаллография и
				дефекты
				кристаллической
				решетки
4	способность использовать в	ПК-4	Пороговый	Физические свойства ма-
-	исследованиях и расчетах	1111/-4	пороговыи	териалов;
	знания о методах			Теория термической обра-
	исследования, анализа,			ботки;
	диагностики и моделирования			Технология термической
	свойств веществ (материалов),			обработки;
	физических и химических			,
	процессов, протекающих в			
	материалах при их получении,			
	обработке и модификации			
	способность использовать на	ПК-6	Пороговый	Общее материаловедение;
	практике современные		1	Технология конструкцион-

представления о влиянии	ных материалов;
микро- и нано- структуры на	Неметаллические материа-
свойства материалов, их	лы;
взаимодействии с	Электротехника и электро-
окружающей средой, полями,	ника
частицами и излучениями	

Исходящие компетенции:

No	Компетенция	Код	Уровень освоения,	Название дисциплины
			определяемый	(модуля), для которой
			этапом	данная компетенция
			формирования	является входной
			компетенции	
1	Способность использовать в	ПК-4	Базовый	Перспективные материалы
	исследованиях и расчетах			и технологии;
	знания о методах			Материалы авиационной
	исследования, анализа,			техники.
	диагностики и моделирования			Преддипломная
	свойств веществ (материалов),			НИР
	физических и химических			профессиональная
	процессов, протекающих в			деятельность.
	материалах при их получении,			
	обработке и модификации			

2. Перечень результатов обучения Планируемые результаты обучения по дисциплине

№	Формируемые компетенции	Код	Знать	Уметь	Владеть
1	Способность использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств веществ (материалов), физических и химических процессов, протекающих в материалах при их получении, обработке и модификации	ПК-4	Основные принципы структурного управления свойствами конструкционных и специальных материалов и их исследования. Физические принципы влияния микро- и нано-структуры на свойства материалов, их взаимодействии с окружающей средой, полями, энергетическими частицами и излучением	Уметь анализировать условия работы изделий, выбирать оптимальный тип, состав и структуру материалов и технологию обработки для достижения требуемых свойств.	Навыками исследования структуры и свойств материалов с помощью современного оборудования и в соответствии с предъявляемыми требованиями.

3. Содержание и структура дисциплины (модуля)

№	Наименование и содержание раздела
	Введение. Цель курса и его особенности, связь с другими дисциплинами.
	Проблемы формирования механических свойств в конструкционных материалах.
	Изотропные и анизотропные свойства. Структурно чувствительные и структурно
1	нечувствительные свойства. Примеры. Методы целенаправленного управления
	механическими свойствами конструкционных материалов. Классификация методов
	создания разноориентированных структур. Проблемы управления с межфазным
	взаимодействием и стратегия микроструктурного дизайна.

2	Получение специальных структур при первичной кристаллизации. Получение специальных структур при первичной кристаллизации: выращивание монокристаллов с низкой температурой плавления. Особенности выращивания би- и трикристаллов. Выращивание монокристаллов с высокой температурой плавления. Выращивание монокристаллов сплавов проблемы микро и макросегрегации. Получение с направленной структурой отливок из многофазных сплавов. Выращивание нитевидных кристаллов кристаллизацией из газовой фазы. Получение специальных структур при первичной кристаллизации: сверхбыстрая кристаллизация
3	Деформационные методы управления структурой. Выращивание кристаллов методом деформации и рекристаллизационного отжига. Деформационные методы управления структурой: получение текстурованных материалов. Микроструктурные способы повышения сопротивления распространению трещин. Деформационные методы получения сплавов с субмикронной и нанокристаллической структурой. Особенности строения, физические и механические свойства сплавов с субмикронной и нанокристаллической структурой. Особенности строения, и методы получения сверхпластичных материалов. Особенности строения, физические и механические свойства материалов, полученных методами порошковой металлургии.
4	Материалы, упрочненные непрерывными волокнами. Материалы, упрочненные волокнами: назначение, классификация, расчет свойств. Основные типы упрочняющих волокон. Влияние схемы армирования на свойства волокнистых композитов. Роль поверхности раздела матрица - волокно в металлических композитах. Применение сверхпластичных фольг для получения волокнистых композитов. Преимущества фольг с субмикронной и нанокристаллической структурой для получения волокнистых композитов. Преимущества и ограничения фольговой технологии получения волокнистых композитов. Металлические материалы, применяемые для получения композитов методом пропитки
5	Пространственно- армированные композиционные. Пространственно-армированные композиционные материалы. Типы структурных схем. Понятие трехмерно армированных сред, 4D- материалы. Строение и свойства композитов с полимерными матрицами. Наномодифицирование полимерных матриц. Особенности строения и свойства углерод-углеродных композитов, общие понятия. Особенности строения и свойства углерод-углеродных композитов, дизайн каркасов. Физико-химическое взаимодействие матрица - волокно. Влияние способа получения композита на структуру поверхности раздела.
6	Дискретно упрочненные материалы. Дискретно упрочненные материалы твердыми частицами и нитевидными кристаллами. Дискретно упрочненные материалы. Особенности структуры. Понятие критической длины волокон. Структурный дизайн анизотропии свойств коротковолокнистых композитов. Пластическая и сверхпластическая деформация дискретно упрочненных композитов. Структурированные материалы системы Ti-TiB.

| ненных композитов. Структурированные материалы системы Ti-TiB.

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.