МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра математики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ¹

УЧЕБНОЙ ДИСЦИПЛИНЫ
«ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Уровень подготовки-бакалавриам

Направление подготовки 22.03.01 — Материаловедение и технологии материалов

Направленность подготовки (профиль)

Материаловедение и технология новых материалов

Квалификация (степень) выпускника <u>Бакалавр</u>

> Форма обучения Очная

> > Уфа 2015

Исполнители:	_доцент	Э.	Э.М. Нусратуллин		
	должность	подпись	расшифровка подписи		
Заведующий кафед	црой математики		В.А. Байков		
	наименование кафедры	личная подпись	расшифровка подписи		

¹ Аннотация рабочей программы дисциплины отражает краткое содержание рабочей программы дисциплины, являющейся неотъемлемой частью основной профессиональной образовательной программы.

Место дисциплины в структуре образовательной программы

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 22.03.01 Материаловедение и технологии материалов, утвержденного приказом Министерства образования и науки Российской Федерации от "12" ноября 2015 г. № 1331.

Дисциплина " Теория вероятностей и математическая статистика " является дисциплиной базовой части.

Целью освоения дисциплины является обучение студентов применению основных вероятностно-статистических методов при решении прикладных профессиональных задач.

Залачи:

- Сформировать знания и умения применения основных понятий и методов математического аппарата при решении задач теории вероятностей и математической статистики:
- Изучить математические методы обработки и анализа статистических данных и проводить необходимые расчеты в рамках построенной модели.

Исходящие компетенции:

No	Компетенция	Код	Уровень освоения,		Название дисциплины	
			определяемый		(модуля), для которой	
			этапом		данная компетенция	
			формирования		является входной	
			компете	нции*		
	способностью представлять	ОПК-1	Базовый	уровень	Линейная	алгебра и
	адекватную современному		первого	этапа	аналитическая	геометрия,
	уровню знаний научную		освоения		Математически	ій анализ,
	картину мира на основе знания		компетенці	ИИ	дифференциали	ьные
	основных положений, законов и				уравнения	
	методов естественных наук и					
	математики.					

^{*-} пороговый уровень дает общее представление о виде деятельности, основных закономерностях функционирования объектов профессиональной деятельности, методов и алгоритмов решения практических задач;

-базовый уровень позволяет решать типовые задачи, принимать профессиональные и управленческие решения по известным алгоритмам, правилам и методикам;

-повышенный уровень предполагает готовность решать практические задачи повышенной сложности, нетиповые задачи, принимать профессиональные и управленческие решения в условиях неполной определенности, при недостаточном документальном, нормативном и методическом обеспечении.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по лисшиплине

№	Формируемые компетенции	Код	Знать	Уметь	Владеть	
1	способностью представлять адекватную современному уровню знаний научную картину мира на основе	ОПК-1	- математические основы теории вероятностей; - дискретные и непрерывные вероятностные модели;	- использовать методы вероятностного описания случайных величин и их числовых характеристик;	-методами построения вероятностных моделей и их исследования; -навыками выполнения	
	знания основных		- методы описания	- строить простейшие	статистических	

положений,	вероятностных	вероятностные	исследований и
законов и методов	характеристик	модели и проводить	обработки
естественных наук	случайных	необходимые расчеты	экспериментальных
и математики.	величин;	в рамках построенной	данных
	- основные методы	модели.	
	статистических		
	исследований и		
	обработки		
	экспериментальны		
	х данных		

3. Содержание и структура дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц (108 часов).

No	Наименование и содержание раздела
	Теория вероятностей: Предмет теории вероятностей, события, алгебра событий.
	Детерминированные и вероятностные математические модели. Пространство
	элементарных событий. Вероятность: статистический и аксиоматический подходы.
	Аксиомы теории вероятностей. Примеры построения вероятностных пространств.
	Дискретные вероятностные модели, классическое определение вероятности. Элементы
	комбинаторики, перестановки, размещения, выбор с возвращением, выбор без
	возвращения. Геометрические вероятности. Условные вероятности. Независимые
	события. Вероятность произведения событий. Полная группа событий. Формулы
	полной вероятности и Байеса. Дискретные и непрерывные случайные величины.
	Функция распределения и ее свойства. Закон распределения дискретной случайной
	величины. Примеры дискретных законов распределения. Непрерывные случайные
	величины, плотность распределения. Совместное распределение нескольких
	случайных величин. Независимость случайных величин. Некоторые дискретные
	случайные величины и их распределения, индикатор случайного события и его
	распределение, биномиальный закон распределения, геометрическое распределение.
	Простейший поток событий и распределение Пуассона. Некоторые непрерывные
	случайные величины и распределения вероятностей. Равномерное распределение.
1	Показательное распределение и простейший поток событий. Показательное
	распределение как непрерывный аналог геометрического распределения. Нормальный
	закон распределения и его параметры. Функции от случайных величин и их
	распределения. Числовые характеристики распределений. Математическое ожидание случайной величины. Математическое ожидание функции случайной величины.
	Свойства математического ожидания как операции осреднения. Вычисления
	математического ожидания как операции осреднения. Вычисления математического ожидания в случае биномиального, геометрического, пуассоновского
	распределений. Математическое ожидание для равномерного, показательного и
	нормального законов распределения. Дисперсия, среднее квадратическое отклонение
	как характеристики рассеяния и их свойства. Вычисление дисперсии в случае
	биномиального, геометрического и пуассоновского распределений. Вычисление
	дисперсии в случае равномерного, показательного и нормального распределений.
	Отсутствие конечной дисперсии у распределения Коши. Понятие о моментах
	распределения. Моменты нормально распределенной случайной величины.
	Многомерные случайные величины и их числовые характеристики. Ковариация,
	коэффициент корреляции и его основные свойства. Неравенство Чебышева. Предел по
	вероятности и в среднем квадратическом последовательностей случайных величин.
	Закон больших чисел и его следствия. Понятие о центральной предельной теореме.
	Теорема Муавра-Лапласа.
2	Основы математической статистики: Задачи математической статистики. Основные

понятия. Выборка, эмпирическая функция распределения, полигон, гистограмма. эмпирической функции распределения, Сходимость Формулировка Колмогорова. Задача точечной оценки параметров распределения. Понятие статистики и оценки. Несмещенные, состоятельные и эффективные оценки. Выборочные моменты и их свойства. Метод моментов и максимального правдоподобия построения оценок. Примеры. Некоторые распределения математической состоятельных статистики, распределения Стьюдента, хи-квадрат, Фишера. Интервальное оценивание параметров распределения. Доверительные интервалы для среднего и дисперсии. Критерий согласия хи-квадрат и его применения. Регрессионный анализ. Постановка задачи. Оценивание параметров методом максимального правдоподобия. Метод наименьших квадратов. Совпадение оценок с оценками, полученными методом максимального правдоподобия в случае нормальных распределений выборки. Выборочный коэффициент корреляции.

Занятия, проводимые в интерактивной форме, составляют 0% от общего количества аудиторных часов по дисциплине «Теория вероятностей и математическая статистика».

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.