МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра математики

Аннотация рабочей программы

учебной дисциплины

«ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ»

Уровень подготовки:

высшее образование - бакалавриат

Направление подготовки

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

Направленность подготовки (профиль, специализация)

Технология машиностроения

Квалификация (степень) выпускника

Бакалавр

Форма обучения

Очная, очно-заочная, заочная

Уфа 2016

Аннотация соответствует содержанию рабочей программы учебной дисциплины, отражает ее краткое содержание и является неотъемлемой частью основной профессиональной образовательной программы

Заведующий кафедрой технологии машиностроения

Н.К. Криони

Председатель НМС по УГСН 15.00.00 «Машиностроение»

А. Г. Лютов

Место дисциплины в структуре образовательной программы

Дисциплина "Линейная алгебра и аналитическая геометрия" является дисциплиной базовой части учебного плана и входит в модуль «Математика».

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств, утвержденного приказом Министерства образования и науки Российской Федерации от "11" августа 2016 г. № 1000.

Целью освоения дисциплины является изучение методов, задач и теорем высшей математики, формирование знаний о способах решения математических задач и их применении в практической деятельности.

Задачи:

- сформировать знания о методах линейной и векторной алгебры, аналитической геометрии.
- изучить основные утверждения и теоремы линейной и векторной алгебры, аналитической геометрии.
- изучить способы использования методов линейной и векторной алгебры, аналитической геометрии при решении прикладных задач.

Входные компетенции: формируются на базе среднего образования.

Исходящие компетенции:

№	Компетенция	Код	Уровень освоения, определяемый этапом формирования компетенции* Название дисциплины (модуля), для которой данная компетенция является входной	
1	способность использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда	ОПК-1	Базовый уровень первого этапа освоения компетенции	Физика Электротехника и электроника Метрология, стандартизация и сертификация Теоретическая механика Сопротивление материалов Гидравлика и гидроприводы Графическое моделирование в САПР ТП Информационные технологии в машиностроении Системный анализ и математическое моделирование процессов в машиностроении
2	способность участвовать в разработке обобщенных вариантов решения проблем, связанных с машиностроительными производствами, выборе оптимальных вариантов прогнозируемых последствий решения на основе их анализа	ОПК-4	Базовый уровень первого этапа освоения компетенции	Электротехника и электроника Метрология, стандартизация и сертификация Теоретическая механика Сопротивление материалов Гидравлика и гидроприводы Теория автоматического управления САПР в технологии машиностроения

^{* -} базовый уровень позволяет решать типовые задачи, принимать профессиональные и управленческие решения по известным алгоритмам, правилам и методика.

2. Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

No	Формируемые компетенции	Код	Знать	Уметь	Владеть
1	способность	ОПК-1	основные поня-	использовать матема-	методами реше-
	использовать		тия линейной	тические методы в	ния систем ли-
	основные		алгебры, исполь-	технических приложе-	нейных алгебраи-
	закономерности,		зующиеся при	ниях;	ческих уравнений,
	действующие в		изучении обще-		методами вектор-
	процессе		теоретических и		ной алгебры, ме-
	изготовления		специальных		тодами аналити-
	машиностроительных		дисциплин		ческой геометрии.
	изделий требуемого		дисциплин		
	качества, заданного				
	количества при				
	наименьших затратах				
	общественного труда				
2	способность	ОПК-4	- основные поня-	строить математиче-	основами мате-
	участвовать в		тия линейной и	ские модели простей-	матического мо-
	разработке		векторной алгеб-	ших систем и процес-	делирования
	обобщенных		ры, аналитической	сов в естествознании и	прикладных за-
	вариантов решения		геометрии.	технике и проводить	дач, решаемых
	проблем, связанных с			необходимые расчеты в	аналитическими
	машиностроительным			рамках построенной	методами
	и производствами,			модели.	мстодами
	выборе оптимальных				
	вариантов				
	прогнозируемых				
	последствий решения				
	на основе их анализа				

3. Содержание разделов дисциплины

№	Наименование и содержание раздела			
1	Линейная и векторная алгебра Матрицы и действия над ними. Определители, их свойства и вычисление. Обратная матрица. Рані матрицы, теорема о базисном миноре. Понятие <i>п</i> -мерного векторного пространства. Линейно зависимые и линейно независимые системы векторов, базис векторного пространства. Системь линейных уравнений и условия их совместности. Теорема Кронекера-Капелли. Решение систем линейных алгебраических уравнений: матричный метод, метод Крамера, метод Гаусса. Запись решения однородной системы линейных алгебраических уравнений с помощью фундаментальной системы решений. Векторы и операции над ними. Направляющие косинусы, проекция вектора на ост другого вектора. Понятие коллинеарности, равенства и компланарности векторов. Скалярное векторное и смешанное произведения векторов, их свойства и вычисление через координать сомножителей. Построение математических моделей с использованием векторного, скалярного и смешанного произведений (вычисление площади параллелограмма, объема параллелепипеда, работа производимая силой по перемещению материальной точки, момент силы). Пакеты прикладных программ и их использование.			
2	Аналитическая геометрия Понятие об уравнении линии на плоскости и поверхности в пространстве. Полярная и декарто прямоугольная системы координат. Связь между ними. Преобразования декартовой систем координат (параллельный перенос и поворот осей координат). Прямая на плоскости и способы задания. Расстояние от точки до прямой. Взаимное расположение прямых на плоскости. Плоскость пространстве и способы ее задания. Расстояние от точки до плоскости. Взаимное расположен плоскостей в пространстве. Прямая в пространстве и способы ее задания. Взаимное расположен прямой и плоскости в пространстве. Кривые второго порядка и их свойства. Поверхности второ порядка, их характеристики и способы построения. Пакеты прикладных программ и использование.			

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.