МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Нанотехнологий

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«Инновационные технологии кузнечно-штамповочного производства в авиастроении»

Направление подготовки (специальность) 15.03.01 Машиностроение

Направленность подготовки (профиль) Машины и технология обработки металлов давлением

> Квалификация выпускника Бакалавр

> > Форма обучения очная

Уфа 2015

Исполнитель: доцент Хайретдинов Э.Ф. Заведующий кафедрой: Валиев Р.З.

Место дисциплины в структуре образовательной программы

Дисциплина ««Инновационные технологии кузнечно-штамповочного производства в авиастроении » является дисциплиной по выбору.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.01 Машиностроение, утвержденного приказом Министерства образования и науки Российской Федерации от "3" сентября 2015 г. № 957.

Целью освоения дисциплины является: является системное овладение студентами теоретическими знаниями, приобретение умений и практических навыков по проектированию современных технологических процессов в авиационной промышленности из жаропрочных, коррозионностойких, жаростойких сталей и сплавов специальными методами штамповки с заданным уровнем физико-механических и эксплуатационных свойств с минимальными материально-техническими затратами и вредными воздействиями на человека и окружающую среду.

Задачи: изучение сущности и особенностей проектирования современных технологических процессов обработки металлов давлением, используемых в авиастроении, конструктивных особенностей деформирующего инструмента и основ технологической подготовки производства, для получения качественной поковки..

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

№	Формируемые	Код	Знать	Уметь	Владеть
	компетенции				
1	умение применять	ОПК4	Особенности	должен уметь	навыками
	современные методы для		заготовительного	владеть	конструирования
	разработки малоотходных,		производства	методиками	заготовок и
	энергосберегающих и		авиационного	анализа, выбора и	инструментов
	экологически чистых		_	разработки	при внедрении
	машиностроительных		применяемое	рациональных	специальных
	технологий,		оборудование и	технологических	методов
	обеспечивающих		• .	процессов	объемной и
	безопасность		свойства	получения поковок	листовой
	жизнедеятельности людей и		авиационных	и деталей	штамповке
	их защиту от возможных		материалов,	авиационных	
	последствий аварий,		теоретические	двигателей и	
	катастроф и стихийных			планера самолета	
	бедствий; умением		физико-	методами расчета и	
	применять способы		механических и	оптимизации	
	рационального			термомеханических	
	использования сырьевых		-	режимов обработки	
	энергетических и других		особенности и	авиационных	
	видов ресурсов в		современные	материалов ковкой	
	машиностроении		направления	и штамповкой.	

			интенсификации		
			технологических		
			процессов		
			авиационного		
			машиностроения		
2	умение обеспечивать	ПК-13	Знать цели,	умением осваивать	Постановкой и
	техническое оснащение		основные	вводимое	решением задачи по
	рабочих с размещением		теоретические	оборудование по	выбору
	технологического		принципы выбора	заданным	рациональных
	оборудования;		и разработки	методикам с	вариантов
			вариантов	обработкой и	проектирования
			проектирования	анализом	участков и цехов
			участков и цехов	результатов	для обеспечения
			на основе ТЭК		высоких технико-
			действующих		Экономических
			проектировочных		показателей участка или цеха
			компоновок цеха		или цела

Содержание разделов дисциплины

	Содержание разделов дисциплины
№	Наименование и содержание разделов
1	Современные технологические процессы объемной штамповки заготовок типовых деталей двигателя самолета Сущность продольной вальцовки. Механическая схема деформации при продольной вальцовке Условия захвата заготовки. Опережение и отставание при вальцовке. Алгоритм разработки технологического процесса вальцовки.
	Механическая схема поперечно-клиновой вальцовки (ПКВ). Сущность формообразования заготовки. Условия устойчивости протекания процесса ПКВ. Алгоритм разработки технологического процесса ПКВ.
	.Штамповка в режиме сверхпластической деформации заготовок (СПД). Сущность изотермической штамповки Недостатки и экономическая целесообразность применения изотермической штамповки.
	Сущность СПД. Условия СПД. Поведение структуры материала при СПД.
	Сущность формообразования и кинематика движения инструмента и заготовки при радиальном обжатии поковки удлиненной формы. Схема механизмов обжатия. Алгоритм разработки технологии радиального обжатия заготовки.
	Сущность формообразования при накатывании шлицев (зубьев). Механическая схема деформации при накатывании.
	Сущность формообразования при раскатки кольцевых заготовок. Механическая схема деформации при раскатке. Разновидности схем раскатки. Алгоритм разработки технологии раскатки кольцевых заготовок.
2	Современные технологические процессы листовой штамповки типовых деталей двигателя самолета 8 Особенности холодной деформации листовых заготовок авиационных материалов: алюминиевых и титановых сплавов, жаропрочных сталей, молибденовых, ниобиевых, танталовых, циркониевых и магниевых сплавов.
	9. Принципиальные схемы операции штамповки резиной, жидкостью, жидкостью через резиновую диафрагму. Основные технологические операции: гибка, отбортовка, вытяжка. Расчетные технологические зависимости и силовые параметры процессов штамповки.

- 10 Принципиальная схема вытяжки с противодавлением резиновой матрицы и жидкостью. Гидромеханическая штамповка труб с различными полостями, отростками и т.д.
- 11 Штамповка с дифференциальным нагревом. Особенности штамповки. Технологические операции: обжим раздача, осадка труб с выворачиванием внутрь или наружу, образование дна или фланца, вытяжка или отбортовка.
- 12. Штамповка листовых деталей на падающих молотах. Основные технологические операции: гибка, вытяжка, отбортовка, формовка, Расчет массы падающих частей молота энергетическим методом, работы пластической деформации.
- 13. Горячая листовая штамповка. Основные технологические операции: вырубка, горячая гибка, вытяжка. Термомеханические параметры горячей листовой штамповки.
- 14. Интенсификация процесса вытяжки: наложение на очаг деформации дополнительной внешней силы; схема 3-х осного сжатия, пульсирующая вытяжка.
- 15 Гибка на 4-х валковых машинах. Расчет работы пластической деформации, мощности привода, прессование симметричных и несимметричных профилей, панелей.
- 16 Гибка труб наматыванием на копир, проталкиванием через фильеру. Способы повышающие точность изготовления гнутых деталей. Ротационное выдавливание, гибка в штампах, гибка с тангенциальным растяжением и тангенциальным сжатием.
- 17.Поперечная обтяжка, расчет силы деформирования. Продольная обтяжка. Расчет размеров заготовки, Силы деформирования.
- 18. Кольцевая обтяжка. Схема процесса, расчет максимальной относительной деформации растяжения, силы деформирования, характера изменения толщины деформации детали. Оборудование при обтяжки.
- 19 Электрогидравлическая штамповка (ЭГШ). Схема установки, методы штамповки, основные технологические операции. Работа формоизменения заготовки.
- 20.Штамповка взрывом. Сущность метода штамповки, схема установки, основные технологические операции, параметры детонационной волны, максимальное давление на фронте ударной волны, работа пластической деформации, используемое оборудование.
- 21. Магнитно-импульсная штамповка Сущность штамповки, сема установки, величина давления электромагнитного поля, длительность воздействия волны, характер распределения волны внутри деформируемой детали.
- 22. перспективные направления развития процессов листовой штамповки. Экологические аспекты современных технологий кузнечного производства

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины