МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Машин и технологии литейного производства

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

учебной дисциплины

«ОСНОВЫ ТЕХНОЛОГИИ ЛИТЬЯ ТИТАНОВЫХ И ИНТЕРМЕТАЛЛИДНЫХ СПЛАВОВ»

Уровень подготовки <u>высшее образование - бакалавриат</u> (высшее образование - бакалавриат; высшее образование – специалитет, магистратура)

Направление подготовки (специальность)

<u>15.03.01 Машиностроение</u>
(код и наименование направления подготовки, специальности)

Направленность подготовки (профиль, специализация) <u>Машины и технология литейного производства</u> (наименование профиля подготовки, специализации)

> Квалификация (степень) выпускника <u>бакалавр</u>

> > Форма обучения очная

подпис

Исполнители:

доцент

О.Б.Деменок расшифровка подписи

Зам. зав. кафедрой

Машины и технология литейного производства наименование кафедры

nodnuch

Е. С. Гайнцева расшифровка подписи

Место дисциплины в структуре образовательной программы

Дисциплина «Основы технологии литья титановых и интерметаллидных сплавов» является факультативной дисциплиной.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) «Машиностроение», утвержденного приказом Министерства образования и науки Российской Федерации от "03" сентября 2015 г. № 957.

Целью освоения дисциплины является формирование у бакалавра знаний и умений основ теоретических знаний, навыков технологии изготовления отливок из титановых и интерметаллидных сплавов.

Задачи:

- изучение основных технологических процессов литья титановых и интерметаллидных сплавов;
- изучение теоретических основ формирования структуры титановых и интерметаллидных сплавов;
- изучение влияния технологических параметров литья на структуру и свойства титановых и интерметаллидных сплавов

Входные компетенции:

	, ,	1	l .			
No	Компетенция	Код	Уровень	Название дисциплины		
			освоения,	(модуля),		
			определяемый	сформировавшего данную		
			этапом	компетенцию		
			формирования			
			компетенции*			
1	умение использовать основные	ОПК-1	пороговый	Механика жидкости и газа		
	законы естественнонаучных			Теория формирования		
	дисциплин в профессиональной			отливки		
	деятельности, применять					
	методы математического					
	анализа и моделирования,					
	теоретического и					
	экспериментального					
	исследования					

- *- пороговый уровень дает общее представление о виде деятельности, основных закономерностях функционирования объектов профессиональной деятельности, методов и алгоритмов решения практических задач;
- -базовый уровень позволяет решать типовые задачи, принимать профессиональные и управленческие решения по известным алгоритмам, правилам и методикам;
- -повышенный уровень предполагает готовность решать практические задачи повышенной сложности, нетиповые задачи, принимать профессиональные и управленческие решения в условиях неполной определенности, при недостаточном документальном, нормативном и методическом обеспечении.

Исходящие компетенции:

№	Компетенция	Код	Уровень освоения, определяемый этапом формирования компетенции	Название дисциплины (модуля), для которой данная компетенция является входной
1	способность обеспечивать технологичность изделий и процессов их изготовления; умение контролировать соблюдение технологической дисциплины при изготовлении изделий	ПК-11	базовый	Производственная практика
2	умение выбирать основные и вспомогательные материалы и способы реализации основных технологических процессов и применять прогрессивные методы эксплуатации технологического оборудования при изготовлении изделий машиностроения	ПК-17	базовый	Производственная практика

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

№	Формируемые компетенции	Код	Знать	Уметь	Владеть
1	способность обеспечивать технологичность изделий и процессов их изготовления; умение контролировать соблюдение технологической дисциплины при изготовлении изделий	ПК- 11	теоретические основы формирования технологических процессов литья и формирование структуры титановых и интерметаллидных сплавов; основы технологических процессов литья титановых и	применять базисные основы теории технологических процессов литья и формирования структуры на физикомеханические свойства титановых и интерметаллидных сплавов;	Навыком теоретических основ обеспечения технологии литья титановых и интерметаллидны х сплавов; навыком теоретических основ формирования структуры и влияния их на
2	умение выбирать основные и вспомогательные материалы и способы реализации	ПК- 17	интерметаллидных сплавов; влияние технологических параметров литья на структуру и свойства титановых и	применять влияние технологических параметров литья на структуру и свойства титановых и	физико- механические свойства титановых и интерметаллидны х сплавов.

№	Формируемые компетенции	Код	Знать	Уметь	Владеть
	основных технологических процессов и применять прогрессивные методы эксплуатации технологическог о оборудования при изготовлении изделий машиностроения		интерметаллидных сплавов; на системном уровне представлений о технологии литья титановых и интерметаллидных сплавов.	интерметаллидных сплавов, а также решать задачи по определению фазовых изменений применительно к технологическим системам литейного производства.	

Содержание и структура дисциплины «Основы технологии литья титановых и интерметаллидных сплавов»

Общая трудоемкость дисциплины составляет 1 зачетная единица (36 часов).

Трудоемкость дисциплины по видам работ

Вид работы	Трудоемкость, час.
	6семестр
Лекции (Л)	8
Практические занятия (ПЗ)	8
Лабораторные работы (ЛР)	8
КСР	1
Самостоятельная работа (проработка и повторение лекционного материала и материала учебников и учебных	2
пособий, подготовка к лабораторным и практическим занятиям, коллоквиумам, рубежному контролю и т.д.)	
Подготовка и сдача зачета	9
Вид итогового контроля (зачет, экзамен)	зачет

Содержание разделов и формы текущего контроля

No	Наименование и содержание раздела	Количество часов						Литература,	Виды
		Аудиторная работа			CPC	Всего	рекомендуемая	интерактивных	
		Л	П3	ЛР	KCP			студентам	образовательных
									технологий
			6 сем	естр					
_	История развития литейного производства	_						P 6.1.1,	Лекция-
1	титана и интерметаллида титана в России	1	-	-	-	-	1	P 6.2.1,	визуализация
	Литейные титановые и интерметаллидные							P 6.1.1,	Лекция-
	сплавы, их особенности и недостатки.							P 6.1.2,	визуализация
	Литейные свойства титановых и							P 6.2.1	Технология
2	интерметаллидных сплавов, температурный	2	2	4	0,5	_	10,5		коллективного
	интервал кристаллизации, жидкотекучесть и								взаимодействия
	заполняемость форм, усадочные процессы и								
	остаточные напряжения.								
	Плавильно-заливочное оборудование и							P 6.1.1,	Лекция-
	технология вакуумной гарнисажной и							P 6.1.2,	визуализация
3	индукционной плавки. вакуумные плавильно-	2	4	4	-	2	12	P 6.2.1	
	заливочные установки, гарнисажные тигли,								
	шихтовые материалы и их подготовка к плавке								
	Литейные формы, способы литья и							P 6.1.1,	Лекция-
	формирование отливок. Формовочные							P 6.1.2,	визуализация
	материалы для титанового литья и их основные							P 6.2.1	Технология
4	свойства, физико-химическое взаимодействие	2	2	-	0,5	-	4,5		коллективного
	отливок с формой, центробежное литье,								взаимодействия
	заполняемость форм, затвердевание отливки,								
	газообмен при формировании отливок								
	Качество титановых и интерметаллидных							P 6.1.1,	Лекция-
	отливок и водородная технология. Качество							P 6.2.1,	визуализация
5	поверхности отливок, плотность отливок,	1	-	_	-	-	1		Технология
	точность отливок, контроль отливок и								коллективного
	исправление дефектов.								взаимодействия

Занятия, проводимые в интерактивной форме, составляют 100 % от общего количества аудиторных часов по дисциплине «Основы технологии литья титановых и интерметаллидных сплавов».

Лабораторные работы

№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов
1	2	Изучение структуры интерметаллидного титанового сплава в состоянии литья и в термообработанном состоянии	4
2	3	Изучение процесса плавки-заливки на плавильно-заливочной установке Consarc	4

Практические занятия (семинары)

No	$N_{\underline{0}}$	Тема	Кол-во
занятия	раздела	I CM a	часов
1	2	Структура и свойства интерметаллидных и титановых сплавов	2
2	4	Расчет литниковых систем для заливки форм для заливки центробежным способом	2
3	3	Расчет гарнисажного тигля	4

Учебно-методическое обеспечение самостоятельной работы студентов

Вопросы, выносимые на самостоятельное изучение студентами

	, zemovnike na vanevioni vienov noj ivini vijavniki	
$\mathcal{N}_{\overline{o}}$	Вопросы, выносимые на самостоятельное изучение	
раздела	Вопросы, выпосимые на самостоятельное изучение	часов
	Плавка титановых сплавов и алюминидов титана в «холодном» медном тигле	1
1-5	Процесс высокотемпературной газостатической обработки (ВГО или ГИП) отливок из титановых сплавов и алюминидов титана	1
	Итого:	2

Учебно-методическое и информационное обеспечение дисциплины (модуля) Основная литература

- 1. Власов В.С. Металловедение: [учебное пособие для студентов образовательных учреждений, реализующих программы среднего профессионального образования] / В.С. Власов Москва: Альфа М, 2011-336 с.
- 2. Гини Э.Ч. Специальные технологии литья: [учебник для студентов высших учебных заведений, обучающихся по направлению «Машиностроительные технологии и оборудование», специальности «Машины и технологии литейного производства»] /Э.Ч. Гини, А.М. Зарубин, В.А. Рыбкин Москва: Издательство МГТУ, 2010 367 с., [4] л. цв. ил.

Дополнительная литература

1. Давыдов Н.И. Литейные противопригарные покрытия [Электронный ресурс]: справочник/Н.И. Давыдов – Москва: Машиностроение, 2009 -240 с.

Интернет-ресурсы (электронные учебно-методические издания, лицензионное программное обеспечение)

На сайте библиотеки http://library.ugatu.ac.ru/ в разделе «Информационные ресурсы», подраздел «Доступ к БД» размещены ссылки на интернет-ресурсы.

Методические указания к практическим занятиям

Деменок О.Б., Бакерин С.В. Методические указания к выполнению практических работ по курсу «Основы технологии литья титановых и интерметаллидных сплавов», рукопись, 20 с

Методические указания к лабораторным занятиям

Деменок О.Б., Бакерин С.В. Методические указания к лабораторным работам по курсу «Основы технологии литья титановых и интерметаллидных сплавов», рукопись, 30 с.

Образовательные технологии

При реализации дисциплины применяются классические образовательные технологии. При реализации дисциплины применяются интерактивные формы проведения практических занятий в виде проблемного обучения. Проблемное обучение ориентировано на то что, студент всегда работает с реальными данными, что требует от него адаптации собственных знаний по дисциплине, возможно, в том числе за счет их самостоятельного расширения, для решения конкретной задачи.

Материально-техническое обеспечение дисциплины

Лабораторные занятия проводятся в компьютерном классе кафедры Машины и технология литейного производства (7-207), оснащенных IBM (класса IntelCorei5) с операционной средой WINDOWS 7.

Адаптация рабочей программы для лиц с ОВЗ

Адаптированная программа разрабатывается при наличии заявления со стороны обучающегося (родителей, законных представителей) и медицинских показаний (рекомендациями психолого-медико-педагогической комиссии). Для инвалидов адаптированная образовательная программа разрабатывается в соответствии с индивидуальной программой реабилитации.