МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Двигатели внутреннего сгорания

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

УЧЕБНОЙ ДИСЦИПЛИНЫ

«ОСНОВЫ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ В ДВИГАТЕЛЯХ И ЭНЕРГОУСТАНОВКАХ»

> Направление подготовки 13.03.03 Энергетическое машиностроение

> > Профиль подготовки Двигатели внутреннего сгорания

Квалификация выпускника Бакалавр

> Тип программы Академический

Форма обучения Очная

Уфа 2015

Исполнитель:

доцент

должность

подпись

А.А. Черноусов

расшифровка подписи

Заведующий кафедрой:

Р.Д. Еникеев

расшифровка подписи

Место дисциплины в структуре образовательной программы

Дисциплина «Основы моделирования процессов в двигателях и энергоустановках» является дисциплиной по выбору вариативной части дисциплин учебного плана академической программы подготовки бакалавров очной формы обучения по направлению 13.03.03 Энергетическое машиностроение.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего профессионального образования (ФГОС ВПО) по направлению подготовки 141100 «Энергетическое машиностроение», утвержденного приказом Министерства образования и науки Российской Федерации от 08 декабря 2009 г. № 715 и актуализирована в соответствии с требованиями ФГОС ВО, утвержденного приказом Министерства образования и науки Российской Федерации от 01 октября 2015 г. № 1083.

Целью освоения дисциплины является формирование систематизированных знаний о методологии и приемах математического моделирования процессов различной физической природы в системах двигателей и энергетических установок.

Задачи:

- 1. Изучение основ методологии моделирования на ЭВМ физических процессов разной природы в системах двигателей и энергоустановок.
- 2. Формирование знаний о (создаваемых в рамках указанной методологии) моделях динамических процессов в элементах систем, так и процессов в системах с распределенными характеристиками.
- 3. Формирование знаний о наиболее распространенных численных методах решения дифференциальных уравнений моделей процессов, а также о методах оптимизации.
- 4. Ознакомление с проблематикой проведения на ЭВМ численных расчетов, анализа и интерпретации их результатов (решений задач по моделям динамики процессов численными методами).

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

	№	Формируемые	Код	Знать	Уметь	Владеть
		компетенции				
	1	Способность	ОПК-	Основы	Описывать	Приемами
		применять	2	методологии	постановку задачи,	численного
		соответствующий		математического	математические	расчета
		физико-		моделирования,	модели процессов	процессов в
		математический		процессов	и простые	системах
		аппарат, методы		различной	алгоритмы	невысокой

	0110 11100 11		HOUSE HE THE STATE OF THE	имананиага	пото пироззууу г
	анализа и		природы, типовые	численного	детализации в
	моделирования,		математические	решения	специальных
	теоретического и		модели	алгебраических и	пакетах
	экспериментального		динамических,	дифференциальных	прикладных
	исследования при		термо-, гидро- и	уравнений модели	программ для
	решении		газодинамических		ЭВМ
	профессиональных		процессов в		
	задач		системах и простые		
			методы решения их		
			уравнений		
	Способностью	ОПК-	Модели процессов	Подбирать модель,	Навыками
	демонстрировать	3	в системах	методику решения	решения задач
	знание		двигателей и	и постановку	анализа
	теоретических		энергетических	задачи и	процессов в
	основ рабочих		установок,	инструмент для	системах с по
	процессов в		обеспечивающие	корректного	упрощенным
	энергетических		различную степень	решения	моделям (и в
	машинах, аппаратах		детализации в	прикладной задачи	упрощенной
	и установках		представления	расчета процессов	постановке), а
2			процесса в системе,	в системах	также
			требования к	2 41141411	применяя
			пакетам		численное
			прикладных		моделирование
			программ и		на ЭВМ
			возможности		na JDW
			использования в		
			них моделей того		
	C=0006+005=	ПІ/ 5	или иного класса	C	Паугалия
	Способность	ПК-5	Постановки задач,	Ставить и решать	Приемами
	участвовать в		базовые	задачи анализа	построения
	расчетных и		математические	процессов и задачи	моделей
	экспериментальных		модели и методы	оптимизации	процессов
	исследованиях,		параметрической	элементов систем	невысокой
3	проводить		оптимизации,	двигателей и	детализации, и
	обработку и анализ		применимые в	энергоустановок	приемами
	результатов		расчетных и	в ходе	решения задач
			экспериментальных	исследований	по этим
			исследованиях		моделям
			двигателей и		
			энергоустановок		

Содержание разделов дисциплины

№	Наименование и содержание разделов						
	Введение в дисциплину.						
	Моделирование как методология расчета физических процессов в энергетических						
	установках по математическим моделям.						
	Цель, задачи и план курса. Рекомендуемая литература.						
1	Математическое моделирование как методология. Исходные гипотезы и уравнения. Законы сохранения. Дополнительные гипотезы. Замыкание уравнений. Иерархия моделей. Классификация моделей.						
	Задача. Условия однозначности. Зависимые переменные. Начальные условия. Точное решение. Аналитическое решение. Численное решение.						

Идентификации модели (структурная и параметрическая). Верификация модели по экспериментальным данным.

Расчетный анализ процессов в объекте как поверочный расчет. Параметрический анализ.

Структурный и параметрический синтез объекта как обратная задача (проектировочный расчет: оптимизация объекта).

Моделирование систем и процессов управления техническими системами. Понятие об оптимальном управлении.

Математические модели процессов.

Законы сохранения для элементов систем с сосредоточенными характеристиками. Системы обыкновенных дифф. уравнений (ОДУ) как модели элементов. Задачи с начальными данными для системы ОДУ.

Законы сохранения для процессов в системах с распределенными характеристиками. Системы уравнений с частными производными (УЧП) как модели процессов в системах. Задачи с начальными данными для системы УЧП.

Использование аналогий для построения моделей. Электромеханическая аналогия.

Понятие о многодисциплинарных моделях: гидромеханика, электромеханика и т. п.

Классификация моделей рабочих процессов в системах двигателей. Модели рабочих процессов тепловых двигателей на основе систем ОДУ и УЧП.

Методы численного решения уравнений моделей. Методы параметрической оптимизации.

Декомпозиция. Дискретизация. Расчетная сетка. Аппроксимация и устойчивость. Сходимость численного решения к точному (теорема о сходимости).

Явные методы численного решения систем ОДУ моделей (методы Эйлера и Рунге–Кутты). Примеры решения систем ОДУ: а) динамики точки; б) термодинамического процесса и др.

Явные методы численного решения систем УЧП моделей. Примеры решения уравнений теплопроводности и др.Понятие о неявных методах решения УЧП и систем УЧП.

Методы многопараметрической однокритериальной оптимизации.

Программная реализация моделей: модуль, программа, пакет.

Типовой алгоритм расчета процесса (ввод, расчет, вывод).

Программный модуль как программная реализация моделей. Тест модуля. Тестовая задача. Тестовая программа.

Программная реализация процедур а) анализа и б) синтеза (оптимизации) – программа для ЭВМ.

Пакет прикладных программ как инструмент моделирования процессов. Пакеты общего назначения. Пакеты специального назначения.

Понятие о методологиях проектирования на основе моделирования процессов в технических системах. Расчетные проекты.

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.

2

3

ЗАКЛЮЧЕНИЕ

Научно-методического совета

по направлению подготовки (специальности)

13.03.03 Энергетическое машиностроение

Настоящим подтверждаю, что представленный комплект аннотаций рабочих программ учебных дисциплин по направлению подготовки (специальности)

13.03.03 Энергетическое машиностроение

по профилю (направленности)

Двигатели внутреннего сгорания

реализуемой по форме обучения очной

соответствует рабочим программам учебных дисциплин указанной выше образовательной программы.

Председатель НМС

Ф. Р. Исмагилов

«<u>13</u>» <u>11</u> 201<u>5</u>г.