МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Прикладной гидромеханики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«Лопастные гидромашины и гидродинамические передачи»

Направление подготовки 13.03.03 Энергетическое машиностроение

Направленность подготовки (профиль) Автоматизированное проектирование машиностроительных гидросистем

> Квалификация выпускника бакалавр

> > Форма обучения очная

> > > УФА 2015

Исполнитель: доцент Еникеев Г.Г. Заведующий кафедрой: Целищев В.А.

Место дисциплины в структуре образовательной программы

Дисциплина *«Лопастные гидромашины и гидродинамические передачи»* является вариативной дисциплиной.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки бакалавриата <u>13.03.03</u> <u>Энергетическое машиностроение</u>, утвержденного приказом Министерства образования и науки Российской Федерации от "1" октября 2015 г. № 1083.

Целью освоения дисциплины является: изучение основных тенденций и перспектив развития современных лопастных гидромашин и гидродинамических передач; овладение студентами системой знаний основ теории, методов расчета проточной части, конструкции и совместной работы с гидравлической системой.

Задачи:

- ▶ формирование знаний в области применения лопаточных гидромашин и гидродинамических передач, предназначенных для использования в гидравлических системах с насосами, ГЭС, и силовых приводах вращательного движения; ознакомление обучающихся с устройством, принципом действия динамически насосов, гидротурбин и гидродинамических передач, особенностью их характеристик, способами и средствами регулирования и областями применения;
- ▶ изучение основ теории, методов расчета и проектирования лопастных гидромашин и гидродинамических передач; обучение принципам формирования технических заданий на проектирование лопастных гидромашин по заданным техническим условиям; научить рассчитывать геометрические параметры выбранной схемы лопастной гиромашины по совокупности показателей работоспособности и качества; научить выполнять гидравлические расчеты проточной части и профилирование лопастной системы насоса по параметрам технического задания;
- приобретение навыков решения работы задач совместной лопастных гидродинамических составе гидромашин, передач гидравлической, электрогидравлической и гидромеханической систем. ознакомление с методами подбора насоса для гидравлической системы с заданными характеристиками, анализа характеристик гидродинамической передачи с заданными характеристиками в системе с силовой передачей мощности.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

	№	Формируемые компетенции	Код	Знать	Уметь	Владеть
L		компетенции				
		Способность	ПК-	Об условных	Выполнить	Навыками
	1	осуществлять	13	обозначениях,	монтаж и	применения

			<u> </u>	TIEN #	
	монтажно-		схемах,	наладку ЛГМ и	методов монтажа
	наладочные		конструкции	ГΠ	и наладки
	работы на		принципе работы		лопастных
	объектах				гидромашин и
	профессионал		и методах		гидродинамическ
	ьной		проектирования		их передач
	деятельности		лопастных		
			гидромашин и		
			гидродинамическ		
			их передач		
	Способность	ПК-	О конструкции и	Уметь	Навыками
	осуществлять	14	эксплуатационны	согласовывать	применения
	сервисно-		х характеристиках	характеристики	методов
	эксплуатацио		лопастных	ЛГМ и ГП с	эффективной
2	нные работы		насосов,	характеристика	работы
	на объектах		гидротурбин и	ми системы	энергетического
	профессионал		гидродинамическ		оборудования в
	ьной		их передач.		системе.
	деятельности				

Содержание разделов дисциплины

$N_{\underline{0}}$	Наименование и содержание разделов			
1	Основы теории лопастных гидромашин			
	Приведена классификация лопастных гидромашин – насосов, гидротурбин и			
	гидродинамических передач – гидромуфт, гидротрансформаторов, показана			
	их конструкция и геометрия проточной части. Показаны их энергетические и			
	кинематические параметры. Приведен принцип их работы и отличия от			
	объемных гидромашин и гидроприводов. Рассмотрены теоретические			
	аспекты взаимодействия лопастной системы насосов, гидротурбин и			
	гидродинамических передач с жидкостью. Показано уравнение Эйлера, ка			
	основное уравнение лопастных гидромашин. Показаны соотношения для			
	геометрических, кинематических параметров, режимов работы и напора,			
	гидравлического момента и гидравлической мощности для насоса и			
	гидротурбины. Рассмотрены потери и КПД лопастной гидромашины.			
	Подробно рассмотрены лопастные насосы, дана их классификация.			

2 Лопастные насосы.

классификация насосов, особенности проточной части конструкции различных типов насосов. Рассмотрены вопросы сборки и монтажа насоса в гидравлической системе. Рассмотрена теория рабочего процесса лопастных насосов. На примере лопастного насоса изложена теория подобия и применение ее на практике. Рассмотрены характеристики насосов работа с гидравлической системой. Показаны способы совместная насосов. регулирования Приведены схемы подключения одного или

нескольких насосов к гидравлической системе и особенности определения режима работы насоса. Рассмотрены физические аспекты кавитации в насосе и приведены основные соотношения и характеристики процесса.

Приведены методы расчета и проектирования насоса по заданным параметрам в Т3.

Даны названия лабораторных и практических работ. Приведены темы заданий для самостоятельной и расчетно-графической работы.

3 Обратимые лопастные гидромашины.

Показаны принципы обратимости лопастных гидромашин, круговые характеристики и их практическое использование.

4 Гидротурбины.

Приведена классификация гидротурбин. Рассмотрены схемы проточной части и конструкция гидротурбин. Показаны особенности рабочего процесса и схема использования энергии воды в гидротехнических сооружениях. Рассмотрены основные вопросы кавитации и критерии оценки кавитационных свойств в гидротурбинах.

5 Гидродинамические передачи

Дана классификация гидродинамических передач, схемы основные проточной части ИХ графическое представление. Рассмотрены И конструктивные особенности и особенности рабочего процесса. Выделены преимущества И недостатки гидродинамических передач. Способы регулирования. Показаны особенности протекания характеристик в области обгонных тяговых, тормозных режимов. Приведены способы И совершенствования работы гидродинамических передач с целью увеличения КПД.

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.