МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

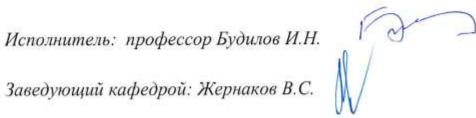
«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Сопротивления материалов

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«Сопротивление материалов»

Направление подготовки (специальность) 13.03.03 Энергетическое машиностроение


Направленность подготовки (профиль) Автоматизированное проектирование машиностроительных гидросистем

> Квалификация выпускника бакалавр

> > Форма обучения очная

> > > УФА 2015

Заведующий кафедрой: Жернаков В.С.

Место дисциплины в структуре образовательной программы

Дисциплина «Сопротивление материалов» является дисциплиной базовой части (Б1.Б.3.10).

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки/специальности 13.03.03 «Энергетическое машиностроение», утвержденного приказом Министерства образования и науки Российской Федерации от «01» октября 2015г. № 1083.

Целью освоения дисциплины является обеспечение теоретической и практической подготовки бакалавра в области прикладной механики деформируемого твердого тела; развитие инженерного мышления; приобретение знаний, необходимых для изучения специальных дисциплин, связанных cрасчетами на прочностную надежность специальных конструкций, проектированием технологических процессов изготовления машиностроительной продукции, средств технологического оснащения.

Задачи:

- 1. Образовательная освоение теоретических основ и получение практических навыков по построению моделей прочностной надежности элементов конструкций и современных методов расчетов; формирование знаний о современных методах расчетов на прочность, жесткость и устойчивость элементов конструкций и машин, необходимых в практической деятельности; ознакомление с современными подходами к расчету сложных систем, элементами рационального проектирования.
- 2. *Развивающая* научить студентов использовать полученные знания для решения задач будущей специальности.
- 3. Воспитательная формирование и развитие на основе полученных знаний естественнонаучного мировоззрения, способностей к познанию и культуре мышления

методов расчетов на механическую надежность элементов конструкций и машин.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

№	Формируемые	Код	Знать	Уметь	Владеть
	компетенции				
	Способность	ОПК-	Законы	Проектировать	Методами расчетов
	применять	2	механики	и конструировать	на прочность и
	соответвующий		материалов;	типовые элементы	жесткость широко
	физико-		Основные	машин, выполнять их	распространенных

	математический	методы и	оценку по прочности,	элементов
	аппарат, методы	средства	жесткости и другим	конструкций;
	анализа и	расчета,	критериям	Навыками
	моделирования,	используемые	работоспособности.	оформления
	теоретического и	при		проектной и
	экспериментальног	проектировании]	конструкторской
	о исследования при	изделий		документации в
	решении	машиностроени	я	соответствии с
	профессиональных	Mammoorpoom	-	требованиями
	задач.			*
				ЕСКД.

Содержание разделов дисциплины					
Наименование и содержание разделов					
Введение .Цели и задачи дисциплины. Модели прочностной надежности.					
Критерии оценки прочностной надежности. Основные принципы					
сопротивления материалов. Внешние и внутренние силы. Метод сечений.					
Понятие о перемещениях, деформациях и напряжениях					
Центральное растяжение-сжатие прямого стержня. Понятие о					
растяжении-сжатии. Продольные силы и их эпюры. Напряжения и					
деформации при растяжении. Закон Гука. Экспериментальное изучение					
механических свойств материалов при осевом растяжении и сжатии.					
Допускаемые напряжения и запасы прочности. Расчеты на прочность и					
жесткость при растяжении и сжатии. Простейшие статически неопределимые					
вадачи на растяжение-сжатие. Особенности поведения статически					
неопределимых систем при температуре и неточности изготовления					
отдельных элементов. Понятие о расчете по допускаемым нагрузкам.					
Геометрические характеристики поперечных сечений стержней.					
Основные понятия. Статические моменты площади. Центр тяжести.					
Моменты инерции плоских сечений, их изменение при параллельном					
переносе и повороте осей координат. Главные оси и главные моменты					
инерции. Вычисление моментов инерции сложных сечений. Моменты					
сопротивления					
Сдвиг и кручение/ Понятие о чистом сдвиге, напряжения и деформации.					
Вакон Гука при сдвиге. Понятие о кручении. Крутящие моменты и их эпюры.					
Напряжения и деформации при кручении круглых стержней. Анализ					
напряженного состояния и характер разрушения при кручении. Расчеты на					
прочность и жесткость. Кручение стержней некруглого поперечного сечения.					
Плоский прямой изгиб. Чистый и поперечный изгиб. Внутренние силовые					
ракторы при изгибе и их эпюры. Нормальные и касательные напряжения при					
нистом и поперечном изгибе. Формулы Навье и Журавского. Линейные и					
угловые перемещения при изгибе. Дифференциальное уравнение упругой					
пинии балки. Расчеты на прочность и жесткость стержней и стержневых					
EKCLOUVE BEOLCON TACOS HELLY					

	систем при плоском прямом изгибе.
6	Основы теории напряженного и деформированного состояний. Понятие о
	напряженном состоянии тела в точке. Тензор напряжений. Закон парности
	касательных напряжений. Главные площадки и главные напряжения. Плоское
	напряженное состояние. Деформированное состояние тела в точке Тензор
	деформаций. Обобщенный закон Гука и потенциальная энергия деформации.
	Основы теории предельных состояний. Хрупкое и вязкое разрушение
	конструкционных материалов. Классические теории прочности. Теория Мора
7	Сложное сопротивление. Сложный и косой изгиб. Напряжения в
	поперечном сечении, нейтральная линия. Определение перемещений.
	Расчеты на прочность и жесткость. Изгиб с растяжением-сжатием.
	Определение напряжений при внецентренном растяжении-сжатии, уравнение
	нейтральной линии, ядро сечений, расчет на прочность. Изгиб с кручением.
	Анализ напряженного состояния в окрестности опасной точки. Расчет на
	прочность.
8	Энергетические методы определения перемещений. Работы внешних и
	внутренних сил. Потенциальная энергия деформации. Энергетические
	теоремы. Общий метод определения перемещений в упругих системах (метод
	Мора). Способ Верещагина.
9	Статические неопределимые стержневые системы. Условия
	возникновения статической неопределимости стержневых систем. Раскрытие
	статической неопределимости методом сил Канонические уравнения метода
	сил. Расчеты на прочность и жесткость статически неопределимых систем.
10	Прочность при циклически меняющихся напряжениях. Явление
	усталости. Механизм усталостного разрушения. Диаграмма усталости и
	предел усталости. Факторы, влияющие на усталостную прочность. Проверка
	прочности при переменных напряжениях.
11	Устойчивость продольно сжатых стержней. Понятие об устойчивости и
	неустойчивом равновесии. Определение критической силы. Формула Эйлера
	и предела ее применимости. Устойчивость сжатых стержней за пределами
	пропорциональности. Исследования Ясинского. Расчеты на устойчивость.
12	Динамическое действие сил. Расчеты на прочность с учетом сил инерции.
	Ударное действие сил. Расчет на прочность и жесткость элементов
	конструкций при ударном воздействии. Расчета на прочность и жесткость
	при колебаниях.

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.