МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ **ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»**

Кафедра Авиационной теплотехники и теплоэнергетики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«Термодинамика и тепломассообмен»

Направление подготовки (специальность) 13.03.03 Энергетическое машиностроение

Направленность подготовки (профиль) Автоматизированные гидравлические и пневматические системы и агрегаты Квалификация выпускника бакалавр

> Форма обучения очная

> > УФА 2015

Исполнитель: доцент Латыпов Ф.Р. — Грему Вакиров Ф.Г. — Брему Заведующий кафедрой: Бакиров Ф.Г.

Место дисциплины в структуре образовательной программы

Дисциплина «*Термодинамика и тепломассообмен*» является дисциплиной *базовой* части (Б1. Б.14).

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования ПО направлению подготовки бакалавриата 13.03.03 Энергетическое машиностроение, утвержденного приказом Министерства образования и науки Российской Федерации от "1" октября 2015 г. № 1083.

Целью освоения дисциплины является формирование у студентов знаний, умений, навыков, необходимых для решения задач, связанных с преобразованиями тепловой энергии работу, расчетом различных термодинамических энергетических ЦИКЛОВ машин, аппаратов, гидравлических пневматических установок, также происходящих в них процессов тепло- и массообмена.

Задачи:

- 1. Формирование у студентов знаний и умений по классическому термодинамическому описанию рабочих тел и процессов в энергетических машинах и аппаратах.
- 2. Формирование у студентов навыков типового термодинамического и критериального тепломассообменного расчета процессов, происходящих в рабочих телах энергомашин широкого круга использования, с умением анализировать и интерпретировать результаты расчетов.
- 3. Привитие студентам навыков использования справочной литературы и таблиц термодинамических, теплофизических свойств веществ, при выполнении соответствующих термодинамических и тепломассообменных расчетов.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

No	Формируемые	Код	Знать	Уметь	Владеть
	компетенции				
1	Способность	ОПК-	1.Основные па-	1.Точно	1.Навыками
	демонстрировать знание	3	раметры и фун-	классифицирова	расчета
	теоретических основ		кции состояния	ть раздел	термодинами
	рабочих процессов в		термодинамиче	дисциплины,	ческих и
	энергетических машинах,		ских систем,	связанный с	тепломассооб
	аппаратах и установках		изображение	решением той	менных

Содержание разделов дисциплины

No	Наименование и содержание разделов		
1	Основные понятия и определения термодинамики. Параметры состояния,		
	теплофизические свойства вещества. Теплоемкость Ср, внутренняя энергия U,		
	энтальпия, энтропия, агрегатные состояния вещества.		
2	Основные законы термодинамики и следствия из них. Предыстория		
	открытия основных законов, парадоксы их интерпретации. Разные варианты		
	формулировки I и II Начал термодинамики. «Вечные двигатели» I-го II-го		
	родов.		
3	Процессы в газах и парах. Изопроцессы в газах. Смеси газов, поправки на		
	реальную сжимаемость газов. Поправочные коэффициенты в уравнении Ван-		
	дер-Ваальса. Термодинамика газовых потоков при истечении и дросселирова-		
	нии.		
4	Циклы тепловых машин. Общие представления о цикле многоступенчатого		
	поршневого компрессора, о циклах ДВС, ГТУ, цикле Ренкина, циклах холо-		

	дильных машин.			
5	Главные сведения о разновидностях тепломассообмена. Теплопроводно-			
	сть, теплоотдача при свободной и вынужденной конвекциях, теплообмен при			
	кипении и конденсации, теплопередача через сложные стенки, лучистый теп-			
	лобмен, диффузия.			
6	Элементы теории подобия применительно к конвективному тепло-мас-			
	сопереносу. Три теоремы теории подобия. Критерии подобия Re, Pr, Gr, Nu.			
	Основное уравнение конвективного теплопереноса Ньютона-Рихмана.			
7	Лучистый теплоперенос. Законы Кирхгофа, Планка, Вина, Стефана-Больц-			
	мана. Степень черноты поверхности ε, тепловые экраны.			
8	Основы расчетов теплообменных аппаратов. Классификация теплообмен-			
	ных аппаратов и их расчет с помощью водяных эквмиалентов.			

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины