МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

УЧЕБНОЙ ДИСЦИПЛИНЫ

«Физика»

Уровень подготовки <u>бакалавриат</u>

Направление подготовки (специальность) 13.03.02 Электроэнергетика и электротехника (код и наименование направления подготовки, специальности)

Направленность подготовки (профиль, специализация)

Электромеханика (наименование профиля подготовки, специализации)

Квалификация (степень) выпускника бакалавр

Форма обучения очная

Уфа 2015

Исполнители:

доцент

Тучков С.В.

Заведующий кафедрой

физики_

наименование кафедры ая подпись

Александров И.В

Место дисциплины в структуре образовательной программы

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего профессионального образования (ФГОС ВПО) по направлению подготовки 140400 Электроэнергетика и электротехника, утвержденного приказом Министерства образования и науки Российской Федерации от "8" декабря 2009 г. № 710 и актуализирована в соответствии с требованиями ФГОС ВО 13.03.02 Электроэнергетика и электротехника утвержденного приказом Министерства образования и науки Российской Федерации от "3" _сентября 2015 г. № 955.

Дисциплина физика является дисциплиной:

согласно $\Phi \Gamma O C B \Pi O$ базовой части математического и естественнонаучного цикла; согласно $\Phi \Gamma O C B O$ базовой части.

Целью освоения дисциплины является: освоение студентами основных физических явлений, законов и возможностей их применения для решения научно-технических задач в теоретических и прикладных аспектах, возникающих в последующей профессиональной деятельности выпускников технического университета.

Задачами курса физики являются:

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
 - формирование у студентов основ естественнонаучной картины мира;
 - ознакомление студентов с историей и логикой развития физики и основных её открытий.

После завершения обучения студенты должны демонстрировать компетенции, перечисленные ниже.

Матрица соответствия компетенций $\Phi \Gamma OC$ ВПО компетенциям $\Phi \Gamma OC$ ВО представлена в таблице:

Компетенции ФГОС ВПО	Компетенции ФГОС ВО					
Обладать способностью демонстрировать базовые	Способность применять соответствующий					
знания в области естественнонаучных дисциплин	физико-математический аппарат, методы					
и готовностью использовать основные законы в	анализа и моделирования, теоретического и					
профессиональной деятельности, применять	1 1					
методы математического анализа и	профессиональных программ (ОПК-2).					
моделирования, теоретического и						
экспериментального исследования (ПК-2);						
готовностью выявить естественнонаучную						
сущность проблем, возникающих в ходе						
профессиональной деятельности, и						
способностью привлечь для их решения						
соответствующий физико-математический						
аппарат (ПК-3).						

Дисциплина «Физика» взаимосвязана со следующими дисциплинами: математика, химия. Предшествующими курсами, на которых базируется дисциплина «Физика», являются школьные дисциплины: физика, алгебра, геометрия, алгебра и начало анализа, химия.

Исходящие компетенции:

Ŋ <u>o</u>	Компетенция	Код	Уровень освоения,	Название дисциплины			
			определяемый	(модуля), для которой			
			этапом	данная компетенция			
			формирования	является входной			
			компетенции				
1.	Способностью использовать	ОПК-3	Базовый уровень	Теоретические основы			
	методы анализа и		по аспектам	электротехники			
	моделирования электрических		изучаемой				
	цепей		дисциплины,				
			2 этап				
2.	Способность применять	ОПК-2	Базовый уровень	Прикладная механика			
	соответствующий физико-		по аспектам				
	математический аппарат, методы		изучаемой				
	анализа и моделирования,		дисциплины,				
	теоретического и		2 этап				
	экспериментального						
	исследования при решении						
	профессиональных программ						
3.	Способность участвовать в	ПК-1	Базовый уровень	Электрические машины			
	планировании, подготовке и		по аспектам				
	выполнении типовых		изучаемой				
	экспериментальных		дисциплины,				
	исследований по заданной		2 этап				
	тематике						
	Способность обрабатывать	ПК-2	2				
	результаты экспериментов						

Перечень результатов обученияПроцесс изучения дисциплины направлен на формирование элементов следующих компетенций:

COMIT	пенции.				
№	Формируемые компетенции	Код	Знать	Уметь	Владеть
	Формируемые	ОПК-2	физические основы механики, электричества и магнетизма, физики колебаний и волн, квантовой физики, электродинамики, статистической физики и термодинамики, атомной и ядерной физики; фундаментальные понятия, законы и	уметь решать типовые задачи по основным разделам курса, используя методы математического анализа; использовать физические законы при анализе и решении проблем профессиональной деятельности; выделять физическое содержание в прикладных задачах	Владеть методами математического описания физических явлений и процессов, определяющих принципы работы различных технических устройств; методами корректной оценки погрешностей при проведении
			теории классической и	_	проведении физического
			классической и современной	будущей деятельности.	физического эксперимента;
			физики.	делтельности.	методами

		проведения физических измерений.

Содержание и структура дисциплины (модуля)
Общая трудоемкость дисциплины составляет 12 зачетных единиц (432 часа).
Трудоемкость дисциплины по видам работ

Вид работы	Тру	доемкость, час	C.
	2 семестр	3 семестр	4 семестр
Лекции (Л)	24	24	28
Практические занятия (ПЗ)	18	16	14
Лабораторные работы (ЛР)	24	20	20
KCP	4	4	4
Курсовая проект работа (КР)			
Расчетно - графическая работа (РГР)			
Самостоятельная работа (проработка и повторение	65	71	42
лекционного материала и материала учебников и			
учебных пособий, подготовка к лабораторным и			
практическим занятиям, коллоквиумам, рубежному			
контролю и т.д.)			
Подготовка и сдача экзамена			36
Подготовка и сдача зачета	9	9	
Вид итогового контроля (зачет, экзамен)	зачет	зачет	экзамен

Содержание разделов и формы текущего контроля Раздел 1. Механика. Молекулярная физика и термодинамика

$N_{\underline{0}}$	Наименование и содержание раздела			Коли	чество ча	СОВ		Литература,	Виды интерактивных
		Ауд	иторна	я работ	a	CPC	Всего	рекомендуемая	образовательных
		Л	П3	ЛР	КСР			студентам*	технологий*
1	Механика. Молекулярная физика и термодинамика							1. Детлаф А.А., Яворский Б.М. Курс	
								физики. – М.:	
								Издательский центр	
								«Academia», 2014. –	
								720c.	
								2. Трофимова Т.И.	
								Курс физики. – М.:	
								Издательский центр	
								«Academia», 2014. –	
								560c.	
1.1	Кинематика материальной точки и	3	2	2	0,5	6	13,5	1. Глава 1. §§ 1.1-1.4	Лекция-
	поступательное движение твердого тела.							C. 8-18.	визуализация,
	Механическое движение. Траектория, путь,							Глава 4. § 4.1 С. 47-	компьютерное и
	перемещение. Скорость и ускорение при							50.	бланочное
	прямолинейном и криволинейном движении.							2. Глава 1. §§ 1-4 С.	тестирование.
	Угловая скорость и угловое ускорение.							7-13.	Представление
									отчётов, защита
									лабораторных работ.
1.2	Динамика материальной точки и	2	3	4	0,5	6	15,5	1. Глава 2. §§ 2.1-2.7	Лекция-
	поступательного движения твердого тела.							C. 19-31.	визуализация,
	Закон инерции. ИСО. Второй и третий закон							Глава 5. §§ 5.1, 5.3	компьютерное и
	Ньютона. Масса. Сила, импульс. Закон							C. 59-61.	бланочное
	сохранения и изменения силы. Центр масс и							2. Глава 2. §§ 5-10 C.	тестирование.
	закон его движения. Движение тела							14-22.	Представление
	переменной массы.								отчётов, защита
									лабораторных работ.
1.3	Работа и энергия.	3	2	2	0,5	6	13,5	1. Глава 3. §§ 3.1-3.4	Лекция-
	Механическая работа, кинетическая энергия.							C. 32-43.	визуализация,
	Связь между кинетическими энергиями в							Глава 5. §§ 5.2, 5.4	компьютерное и

1.4	различных системах отсчета. Консервативные и диссипативные силы. Потенциальная энергия. Закон сохранения и изменения механической энергии. Удары тел и закон сохранения. Закон сохранения момента импульса и динамика вращательного движения. Момент силы и момент импульса. Закон сохранения и изменения момента импульса. Момент инерции тела. Теорема Штейнера. Уравнение динамики вращательного движения тела. Энергия вращающегося и	3	2	4	0,5	6	15,5	С. 61-65, 67-73. 2. Глава 3. §§ 11-15 С. 23-33. 1. Глава 4. §§ 4.2- 4.3, 5.3 С. 50-58, 65- 67. 2. Глава 4. §§ 16-19 С. 34-39.	бланочное тестирование. Представление отчётов, защита лабораторных работ. Лекция-визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита
1.5	катящегося тела. Элементы динамики сплошной среды. Общие свойства вещества в различных агрегатных состояниях. Давление жидкости и газа. Уравнение Бернулли. Деформация тел и закон Гука. Подъемная сила.	0,5				5	5,5	2. Глава 6. §§ 28-30 С. 57-62.	лабораторных работ. Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
1.6	Основы специальной теории относительности. Механический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности. Преобразование Лоренца. Относительность одновременности, длин и времени события. Интервал между событиями. Преобразование скоростей в релятивистской механике. Релятивистская динамика. Закон взаимосвязи массы и энергии.	2	1			2	5	1. Глава 7. §§ 7.1-7.7 С. 84-104. 2. Глава 7. §§ 34-40 С. 67-79.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
2	Механические колебания и волны Колебания. Гармонические колебания и их	2	2	4	0,5	8	16,5	1. Глава 27 §§ 27.1, 27.2, 27.4, 27.7, 28.1,	Лекция- визуализация,

	характеристики. Векторное и комплексное представление гармонического колебания. Математический, пружинный и физический маятники. Затухающие колебания и их характеристики. Вынужденные колебания, резонанс. Сложение колебаний. Биения. Фигуры Лиссажу. Волны в упругой среде. Продольные и поперечные волны. Уравнение плоской бегущей волны и одномерное волновое уравнение. Длина волны, волновое число, фазовая и групповая скорости, стоячие волны. Энергия волны. Эффект Допплера.							28.2, 29.1-29.4 C. 357-362, 370-377, 383-393, 399, 400. 2. Глава 18. §§ 140- 142, 144-148, 153- 155, 157, 159 C. 253- 257, 261-264, 268- 272, 281-292.	компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
3	Молекулярная физика и термодинамика								
3.1	Статистический и термодинамический методы исследования макросистем. Микрои макропараметры макросистем, их равновесные и неравновесные термодинамические состояния и процессы. Основные положения молекулярнокинетической теории (МКТ). Тепловое движение и его характер в различных агрегатных состояниях вещества.	0,5				6	6,5	1. Глава 8. §§ 8.1-8.3 С. 105-109. 2. Глава 8. §§ 41 С. 81.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
3.2	МКТ идеального газа. Модель идеального газа. Уравнение состояния и основное уравнение МКТ идеального газа. Смысл температуры. Газовые законы. Распределение Максвелла по скоростям и энергиям теплового движения молекул идеального газа и его экспериментальная проверка. Распределение Больцмана и барометрическая формула.	3	2	2	0,5	6	13,5	1. Глава 10. §§ 10.1- 10.5 С. 126-136. 2. Глава 8. §§ 41-45 С. 81-90.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
3.3	Явления переноса в термодинамических неравновесных системах. Среднее число столкновений, средняя длина	2	1	2	0,5	6	11,5	1. Глава 10. §§ 10.6- 10.9 С. 136-143. 2. Глава 8. § 48 С.	Лекция- визуализация, компьютерное и

	свободного пробега и эффективный диаметр молекул идеального газа. Число степеней свободы молекул. Закон равнораспределения энергии теплового движения по степеням свободы. Теплопроводность, диффузия, внутреннее трение и их законы. Время релаксации.							94-96.	бланочное тестирование. Представление отчётов, защита лабораторных работ.
3.4	Основы термодинамики Внутренняя энергия макросистемы. Работа газа и количество теплоты. Первый закон термодинамики. Адиабатный процесс. Теплоемкость. Политропный процесс идеального газа. Обратимые и необратимые процессы. Второй закон термодинамики. Тепловые и холодильные машины. Идеальная тепловая машина и ее КПД. Энтропия. Теорема Нернста. Реальные газы и уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Уравнение Клапейрона-Клаузиуса. Фазовые переходы.	3	3	4	0,5	8	18,5	1. Глава 9. §§ 9.1- 9.6, 11.1-11.6, 12.1- 12.3 С. 113-125, 150- 165, 169-177. 2. Глава 9. §§ 51-62, 75 С. 101-122, 141, 142.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
	Итого	24	18	24	4	65	135		

Раздел 2. Электричество и магнетизм

No	Наименование и содержание раздела			Колич	ество ч	асов		Литература,	Виды
		A	удито	рная ра	абота	CPC	Всего	рекомендуемая	интерактивных
		Л	П3	ЛР	КСР			студентам*	образовательных
									технологий**
	Электричество и магнетизм							1. Детлаф А. А., Яворский	
								Б. М. Курс физики. – М.:	
								Издательский центр	
4								«Academia», 2014. – 720c.	
								2. Трофимова Т. И. Курс	
								физики. – М.:	
								Издательский центр	

								«Academia», 2014. – 560c.	
4.1.	Электростатика								
	Электростатическое поле в вакууме. Заряд и его свойства. Закон сохранения электрического заряда. Закон Кулона. Напряженность электростатического поля. Принцип суперпозиции. Поток вектора напряженности. Теорема Гаусса и ее применение для расчета электрических полей. Работа по перемещению заряда в электростатическом поле. Циркуляция вектора напряженности. Потенциал электростатического поля и его связь с напряженностью. Эквипотенциальные поверхности.	4	4	2	0,5	12	22,5	1. Глава 13 §§ 13.1-13.4 С. 183-194. Глава 14 §§ 14.1, 14.2 С. 195-202. 2. Глава 11 §§ 77-85 С. 146-159.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
4.2	Диэлектрики в электрическом поле. Типы диэлектриков. Поляризация диэлектриков. Поляризованность. Напряженность опля в диэлектриках. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектриках. Условия на границе раздела двух диэлектриков. Сегнетоэлектрики.	3	1	2	0,5	8	14,5	1. Глава 15 §§ 15.1-15.5 С. 204-218. 2. Глава 11 §§ 87-91 С. 160-167.	Лекция- визуализация, компьютерное и бланочное тестирование.
4.3	Проводники в Электростатическом поле. Энергия электрического поля. Распределение зарядов в проводнике. Электрическая емкость уединенного проводника. Конденсаторы. Энергия системы зарядов, уединенного проводника, конденсатора. Энергия электростатического поля	2	1	2	0,5	5	10,5	1. Глава 16 §§ 16.1-16.3 С. 219-228. Глава 17 §§ 17.1-17.3 С. 222-235. 2. Глава 11 §§ 92-95 С. 167-175.	Лекция- визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
4.4	Постоянный электрический ток. Постоянный электрический ток и его характери-	3	2	2	0,5	7	14,5	1. Глава 18 § 18.1 С. 236- 238.	Лекция- визуализация,

	стики. Сторонние силы, электродвижущая сила. Напряжение на участке цепи. Закон Ома для однородного участка цепи в интегральной и дифференциальной формах. Сопротивление проводников. Работа и мощность тока. Закон Джоуля-Ленца для участка цепи в интегральной и дифференциальной формах. Правила Кирхгофа для разветвленных цепей.							Глава 19 §§ 19.1-19.3 С. 248-253. 2. Глава 12 §§ 96-101 С. 177-185.	компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
4.5	Основы классической электронной теории электропроводности металлов. Работа выхода электрона из металла. Эмиссионные явления и их применение.	1		2	0,5	3	6,5	1. Глава 18 §§ 18.3-18.5 С. 240-247. 2. Глава 13 §§ 102-105 С. 188-194.	Лекция- визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
4.6	Магнитное поле в вакууме. Магнитная индукция и напряженность магнитного поля. Закон Ампера. Сила Лоренца. Магнитное поле движущегося заряда. Принцип суперпозиции. Закон Био-Савара-Лапласа и его применение к расчету магнитных полей. Теорема о циркуляции вектора магнитной индукции (закон полного тока). Магнитный поток. Теорема Гаусса для магнитного поля. Движение заряженных частиц в электрических и магнитных полях. Эффект Холла.	3	2	2	0,5	9	16,5	1. Глава 21 § 21.3 С. 272- 281. Глава 22 §§ 22.1-22.3, 22.4 С. 282-292. Глава 23 §§ 23.1-23.3 С. 298-304. 2. Глава 14 §§ 109-120 С. 202-219.	Лекция- визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
4.7	Магнитное поле в веществе.	2	2	2	0,5	8	14,5	1. Глава 24 §§ 24.3-24.6 С.	Лекция-

	Магнитные моменты электронов и атомов. Намагниченность и его связь с плотностью молекулярных токов. Напряженность магнитного поля в веществе. Закон полного тока. Классификация магнетиков. Диамагнетики, парамагнетики и ферромагнетики. Условия на границе раздела двух магнетиков.							314-329. 2. Глава 16 §§ 131-136 С. 234-245.	визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ. Представление рефератов.
4.8	Электромагнитная индукция. Основной закон электромагнитной индукции. Правило Ленца. Индуктивность. Явление само- индукции. Токи при размыкании и замыкании цепи. Явление взаимной индукции. Энергия маг- нитного поля.	2	2	2	0,5	7	13,5	1. Глава 25 §§ 25.1-25.4 С. 330-344. 2. Глава 15 §§ 122-130 С. 221-233.	Лекция- визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
4.9	Основы теории Максвелла для электромагнитного поля. Общая характеристика и значение теории Максвелла. Вихревое электрическое поле. Первое уравнение Максвелла. Ток смещения. Второе уравнение Максвелла. Полная система уравнений Максвелла для электромагнитного поля в интегральной и дифференциальной формах, физический смысл этих уравнений.	2		2		8	12	1. Глава 26 §§ 26.1-26.4 С. 347-356. 2. Глава 17 §§ 137-139 С. 246-252.	Лекция- визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита

									лабораторных работ. Представление
4.10	Электромагнитные колебания и волны. Электрический колебательный контур. Свободные затухающие колебания в контуре. Коэффициент затухания, логарифмический декремент затухания, добротность контура. Вынужденные колебания в электрическом контуре. Резонанс. Экспериментальное получение электромагнитных волн. Волновое уравнение для электромагнитного поля. Уравнение плоской электромагнитной волны. Основные свойства электромагнитных волн. Энергия электромагнитных волн. Вектор Пойтинга.	2	2	2		4	10	1. Глава 27 § 27.3 С. 363-364. Глава 28 §§ 28.1, 28.3 С. 371-373. С. 378-382. Глава 30 §§ 30.1, 30.3 С. 401-406. 2. Глава 18 §§ 143, 146-148 С. 258-260, С. 266-268, С. 270-273. Глава 20 §§ 161-164 С. 294-300.	рефератов. Лекция- визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
	Итого:	24	16	20	4	71	135		

Раздел 3. Волновая оптика

$N_{\underline{0}}$	Наименование и содержание раздела	Количество часов						Литература,	Виды
		Ay	удиторн	ая рабо	та	CPC	Всего	рекомендуемая	интерактивных
		Л	ПЗ	ЛР	КСР			студентам*	образовательных
									технологий**
	Волновая оптика							 Детлаф А. А., 	
								Яворский Б. М. Курс	
								физики. – М.:	
								Издательский центр	
								«Academia», 2014. –	
5								720c.	
								2. Трофимова Т. И.	
								Курс физики. – М.:	
								Издательский центр	
								«Academia», 2014. –	
								560c.	
5.1	Электромагнитные волны.	1	1			3	5	1. Глава 30 §§ 30.1-	
3.1	Развитие представлений о природе света.							30.5 C. 401-419.	

	Шкала электромагнитных волн. Энергия электромагнитных волн. Излучение электрического диполя. Отражение и преломление электромагнитных волн на границе раздела двух диэлектрических сред. Интерференция света. Понятие о когерентности. Расчет интерференционной картины от двух	2	1	2	0,5	3	8,5	2. Глава 21 §§ 164- 165 С. 302-304. 1. Глава 31 §§ 31.1- 31.5 С. 419-432 2. Глава 23 §§ 170-	Лекция- визуализация, компьютерное и
5.2	источников света. Пространственная и временная когерентность. Способы наблюдения интерференции. Интерференция в тонких пленках. Полосы равной толщины и равного наклона. Применение интерференции.							175 C. 315-330.	бланочное тестирование. Представление отчётов, защита лабораторных работ.
5.3	Дифракция света Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на простейших преградах. Дифракция Френеля на щели. Расчет распределения интенсивности. Дифракционная решетка. Спектральное разложение. Дисперсия и разрешающая способность дифракционной решетки. Дифракция рентгеновских лучей. Принцип голографии.	2	2	2	0,5	3	9,5	1. Глава 32 §§ 32.1- 32.7 С. 435-449 2. Глава 22 §§ 176- 183 С. 331-345.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
5.4	Взаимодействие электромагнитных волн с веществом Дисперсия света. Электронная теория дисперсии. Нормальная и аномальная дисперсии. Поглощение света. Закон Бугера-Ламберта. Поляризация света. Естественный и поляризованный свет. Закон Малюса. Поляризация света при отражении и преломлении на границе раздела двух диэлектрических сред. Закон Брюстера. Двойное лучепреломление в анизотропных средах. Искусственная анизотропия. Метод фотоупругости. Вращение плоскости поляризации.	3	1	2	0,5	4	10,5	1. Глава 33-34 §§ 33.1-33.5 С. 452-461, §§ 34.1-34.5 С. 464-471 2. Глава 24 §§ 185-187 С. 349-354. 2. Глава 25 §§ 190-196 С. 357-3368.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.

6	Квантовая физика								
6.1	Тепловое излучение Спектральные характеристики теплового излучения. Закон Кирхгофа. Законы излучения абсолютно черного тела. Противоречия классической физики. Квантовая гипотеза Планка.	2	1	2	0,5	2	7,5	1. Глава 35 §§ 35.1- 35.3 С. 477-487 2. Глава 26 §§ 197- 201 С. 369-376.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
6.2	Основы квантовой оптики Внешний фотоэффект и его законы. Уравнение Эйнштейна. Энергия и импульс световых фотонов. Эффект Комптона. Давление света.	2	1	2		3	8	1. Глава 36 §§ 36.1- 36.6 С. 490-500 2. Глава 26 §§ 202- 207 С. 378-387.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
6.3	Атом Модель атома Резерфорда и ее недостатки. Закономерности в спектре излучения атома водорода. Постулаты Бора. Теория Бора для водородоподобных систем.	3	2	2	0,5	3	10,5	1. Глава 38 §§ 38.1-38.5 С. 528-537 2. Глава 27 §§ 208-212 С. 390-397.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
6.4	Корпускулярно-волновой дуализм Гипотеза де-Бройля. Дифракция электронов и нейтронов. Соотношение неопределенностей Гейзенберга	2	1	2	0,5	3	8,5	1. Глава 37 §§ 37.1- 37.4 С. 502-510 2. Глава 28 §§ 213- 215 С. 398-403.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита

									лабораторных работ.
6.5	Квантовые состояния. Уравнение Шредингера Состояние микрочастицы. Волновая функция и ее статистический смысл. Суперпозиция состояний. Амплитуда вероятностей. Временное уравнение Шредингера. Стационарное уравнение Шредингера. Частица в одномерной потенциальной яме. Прохождение частицы через потенциальный барьер. Гармонический осциллятор в квантовой механике.	3	2	2	0,5	4	11,5	1.Глава 37 §§ 37.5- 37.9 С. 513-520 2. Глава 28 §§ 216- 222 С. 403-417.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
6.6	Многоэлектронные атомы Водородоподобные системы в квантовой механике. Квантовые числа, их физический смысл. Энергетические уровни. Спектр излучения. Пространственное распределение плотности вероятности для электрона в атоме водорода. Спин электрона. Спиновое квантовое число. Неразличимость тождественных частиц в квантовой механике. Бозоны и фермионы. Принцип Паули. Распределение электронов в атоме по состояниям. Периодическая система элементов Д.И. Менделеева. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров.	2	1			4	7	1. Глава 39 §§ 39.1-39.6 С. 540-553 2. Глава 29 §§ 223-229 С. 418-429.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
6.7	Элементы квантовой электроники Спонтанное и вынужденное излучения фотонов. Вероятность переходов. Принцип работы квантового генератора. Особенности лазерного излучения. Применение лазеров.	1				2	3	1. Глава 40 §§ 40.1- 40.2 С. 570-573. 2. Глава 29 §§ 233 С. 436-440.	Лекция- визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.

	Элементы квантовой статистики и физи-	3		2		4	9	1. Глава 41 §§ 41.1-	Лекция-
	ки твердого тела							41.8 C. 577-590,	визуализация,
	Понятие о квантовых статистиках Бозе-							глава 42 §§ 42.1-42.3	компьютерное и
	Эйнштейна и Ферми-Дирака. Функции распре-							С. 577-590, глава 43	бланочное
	деления. Уровень Ферми. Теплоемкость твер-							§§43.1-43.5 C. 607-	тестирование.
	дых тел.							619, глава 44	Представление
	Электропроводность металлов. Носители тока							§§44.3-44.4 C. 623-	рефератов.
	в металлах. Недостаточность классической							626.	
	электронной теории. Электронный ферми-газ в							2. Глава 30 §§ 234-	
	металле. Основы квантовой теории электропро-							239 C. 441-450.	
	водности металлов. Явление сверхпроводимо-							2. Глава 31 §§ 240-	
6.8	сти. Акустические и оптические колебания кри-							243, 249-250 C. 450-	
	сталлической решетки. Понятие о фононах.							459, 469-474.	
	Куперовское спаривание электронов. Тун-								
	нельный контакт. Эффект Джозефсона и его								
	применение.								
	Элементы зонной теории кристаллов. Энерге-								
	тические зоны в кристаллах. Валентная зона и								
	зона проводимости. Заполнение зон: металлы,								
	диэлектрики, полупроводники.								
	Собственная проводимость полупроводников.								
	Примесная проводимость полупроводников. Р-								
	<i>п</i> переход и его свойства								
	Атомное ядро. Элементарные частицы	2	1	2	0,5	4	9,5	1. Глава 45 §§ 45.1-	Лекция-
	Строение атомных ядер. Модели ядер. Энер-							45.8 C. 627-637,	визуализация,
	гия связи. Взаимодействие нуклонов в ядре,							глава 46 §§46.1-46.8	компьютерное и
	свойства и природа ядерных сил.							C. 646-668.	бланочное
	Естественная и искусственная радиоактивно-							2. Глава 32 §§ 251-	тестирование.
6.9	сти. Закон радиоактивного распада. Правила							267 C. 476-505.	Представление
	смещения. α- β- распады, γ-излучения.								отчётов, защита
	Ядерные реакции. Реакция деления. Цепная								лабораторных
	реакция. Ядерный реактор. Термоядерный син-								работ.
	тез. Энергия звезд. Управляемый термоядерный								Представление
	синтез.								рефератов.
	Элементарные частицы. Систематика элемен-								

тарных частиц. Типы взаимодействия. Косми-							
ческие лучи.							
Итого	28	14	20	4	42	108	

Занятия, проводимые в интерактивной форме, составляют 50% от общего количества аудиторных часов по дисциплине физика.

Лабораторные работы Раздел 1. Механика. Механические колебания. Статистическая физика и термодинамика

,	Наименования	поланические колеошния. Статистическая физика и терм	
№	разделов	Наименования лабораторных работ	Количество часов
1.	Механика.	№ 1. Определение моментов инерции твердых тел	12
	Механические	методом трифилярного подвеса.	(в течение
	колебания.	№ 2. Изучение законов сохранения момента	семестра студенты
	Kosio dilimi.	импульса и энергии.	выполняют по 3
		№ 3. Изучение законов вращательного движения	лабораторные
		твердого тела.	работы из
		№ 4. Определение моментов инерции твердых тел	нижеприве-
		методом крутильных колебаний.	денного перечня,
		№ 5. Определение моментов инерции тел	включая работы по
		произвольной формы.	моделирова-нию
		произвольной формы. № 6. Изучение законов поступательного движения.	физических
			процессов)
		№ 9. Определение ускорения свободного падения с	процессов)
		помощью математического и физического	
		маятников.	
		маятников. № 10. Изучение колебаний пружинного маятника.	
		№ 11а. Изучение колсоании пружинного маятника. № 11а. Изучение собственных колебаний струны.	
		№ 17а. Изучение сооственных колсоании струны. № 12. Определение ускорения силы тяжести при	
		свободном падении тела.	
		№ 13. Изучение закона сохранения энергии с по-	
		мощью маятника Максвелла.	
		мощью маятника максвелла. № 14. Наклонный маятник.	
		№ 15. Изучение закона сохранения момента им-	
		пульса с помощью гироскопа и определение ско-	
		рости его прецессии.	
		рости сто прецессии. № 107 Изучение законов сохранения импульса и	
		энергии при столкновениях кареток Флетчера.	
		Изучение сложения гармонических колебаний с	
		применением АЦП NI USB-6009: Лабораторный	
		практикум, «Современная физика».	
		практикум, «Современная физика».	
		ВИРТУАЛЬНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ:	
		№ 4.2. Определение скорости звука методом	
		стоячих волн.	
2.	Статистичес-	№ 16. Определение коэффициента Пуассона для	12
	кая физика и	воздуха методом адиабатического расширения.	(в течение
	термодина-	№ 17. Экспериментальная проверка уравнения	семестра студенты
	мика.	состояния и законов идеального газа.	выполняют по 3
		№ 19. Определение коэффициента Пуассона	лабораторные
		воздуха акустическим методом.	работы из
		№ 21. Исследование температурной зависимости	нижеприве-
		удельной теплоемкости алюминия методом	денного перечня,
		охлаждения.	включая работы по
			моделирова-нию
		ха и кинематических характеристик движения его	физических
		молекул.	процессов)
		№ 24. Изучение газовых законов и определение	r
L	I	тем попределение	1

Г	1.1 77 72	
	коэффициента Пуассона газа методом Клемана-	
	Дезорма.	
	№ 25. Определение коэффициентов теплопровод-	
	ности металлов.	
	№ 26. Определение коэффициентов теплопровод-	
	ности твердых диэлектриков.	
	№ 27. Определение коэффициента теплопроводно-	
	сти воздуха и кинематических характеристик теп-	
	лового движения его молекул.	
	№ 28. Определение удельной теплоты плавления	
	олова и изменения его энтропии при нагревании и	
	плавлении.	
	№ 29. Изучение взаимосвязи параметров состоя-	
	ния идеального газа и газовых законов.	
	№ 116. Определение отношения теплоемкостей га-	
	за при постоянном давлении и объеме.	
	№ 119. Определение отношения теплоемкостей га-	
	за при постоянном давлении и объеме резонанс-	
	ным методом.	
	№ 122. Определение теплоты парообразования во-	
	ды.	
	№ 123. Определение коэффициента вязкости	
	воздуха капиллярным методом.	
	№ 124. Определение молекулярной массы и	
	плотности газа методом откачки.	
	№ 125. Определение теплоемкости твердых тел.	
	№ 127. Определение коэффициента теплоемкости	
	газа методом нагретой нити.	
	№ 128. Определение энтропии твердого тела при	
	его нагревании и плавлении.	
	№ 130. Определение коэффициента взаимной	
	диффузии воздуха и паров воды по скорости испа-	
	рения жидкости.	
	ВИРТУАЛЬНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ:	
	№ 2.1. Определение коэффициента вязкости	
	воздуха.	
Итого:		24

Раздел 2. Электричество и электромагнетизм

1 443,	<u> </u>	bo n shekipomai nemsm	
	Наименования		Количество
$N_{\underline{0}}$	разделов	Наименования лабораторных работ	часов
	дисциплины		
		№ 31. Исследование электростатического поля.	8
		№ 32. Изучение законов постоянного тока.	(в течение
		№ 33. Изучение законов постоянного тока. Иссле-	семестра
		дование зависимости КПД источника тока от со-	студенты
1.	Энактичаства	противления нагрузки.	выполняют по 2
1.	Электричество	№ 34. Экспериментальная проверка правил	лабораторные
		Кирхгофа.	работы из
		№ 35. Изучение термоэлектронной эмиссии метал-	нижеприве-
		лов. Определение удельного заряда электрона.	денного перечня,
		№ 36. Изучение термоэлектронной эмиссии метал-	включая работы

			L
		лов. Определение работы выхода электрона.	по моделирова-
		№ 37. Изучение процессов заряда и разряда кон-	нию физических
		денсатора.	процессов)
		№ 38. Измерение электрических свойств твердых	
		диэлектриков.	
		№ 39. Определение электродвижущей силы источ-	
		ника напряжения методом компенсации.	
		№ 41. Изучение газового разряда.	
		№ 43. Изучение диэлектрических свойств сегнето-	
		электриков.	
		№ 45. Определение ЭДС источника тока с помо-	
		щью закона Ома.	
		ВИРТУАЛЬНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ:	
		№ 3.1. Изучение закона Ома.	
		№ 3.2. Исследование электростатического поля.	
		№ 46. Определение удельного заряда электрона	12
		методом магнетрона.	(в течение
		№ 47. Определение горизонтальной составляющей	семестра
		магнитного поля Земли.	студенты
		№ 48. Исследование затухающих колебаний в ко-	выполняют по 3
		лебательном контуре.	лабораторные
		№ 49. Изучение вынужденных колебаний.	работы из
		№ 50. Изучение электронно-лучевого осциллогра-	нижеприве-
		фа.	денного перечня,
		№ 52. Изучение свойств ферромагнетиков и явле-	включая работы
		ния гистерезиса для железа. № 53. Изучение маг-	по моделирова-
		нитного поля соленоида.	нию физических
		№ 54. Изучение явления взаимной индукции.	процессов)
		№ 56. Определение постоянной Холла.	процессов)
	Электромагне-	№ 57. Изучение вихревого электрического поля.	
2.	тизм	№ 58. Изучение электрических процессов в про-	
	IMOM		
		стых электрических цепях.	
		№ 59. Изучение электрических колебаний в свя-	
		занных контурах.	
		№ 60. Изучение магнитного поля прямолинейного	
		тока.	
		ВИРТУАЛЬНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ:	
		№ 3.3. Определение горизонтальной составляющей	
		индукции магнитного поля Земли.	
		№ 3.4. Изучение магнитных свойств	
		ферромагнетиков.	
		№ 3.5. Определение удельного заряда электрона	
		методом магнитной фокусировки.	
		№ 4.3. Изучение затухающих электромагнитных	
		колебаний.	
	Итого:		20

Раздел 3. Волновая оптика. Квантовая физика

	Наименования		Количество
№	разделов	Наименования лабораторных работ	часов
	дисциплины		

	T	14 cd TY 1	
		№ 61. Изучение интерференции света.	8
		№ 62. Определение показателей преломления жид-	(в течение
		ких и твердых тел.	семестра
		№ 63а. Изучение оптических характеристик ди-	студенты
		фракционной решетки.	выполняют по 3
		№ 64. Экспериментальное изучение законов тепло-	лабораторные
		вого излучения.	работы из
		№ 65. Определение длины световой волны с по-	нижеприве-
		мощью дифракционной решетки.	денного перечня,
		№ 66. Изучение поляризованного света и внутрен-	включая работы
		них напряжений в твердых телах оптическим ме-	по моделирова-
		тодом.	нию физических
1.	Волновая	№ 67. Изучение дисперсии света.	процессов)
1.	оптика.	№ 68. Изучение явления поглощения света веще-	
		ством.	
		№ 69. Изучение дифракции света на двумерной	
		дифракционной решетке.	
		№ 70. Изучение вращения плоскости поляризации	
		в растворах оптически активных веществ.	
		№ 71. Изучение законов теплового излучения.	
		№ 72. Изучение интерференции света в клиньях.	
		№ 73. Изучение дифракции света.	
		ВИРТУАЛЬНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ:	
		№ 5.1. Интерференция света. Опыт Юнга.	
		№ 5.2. Изучение дифракции света на одиночной	
		щели и дифракционной решетке.	
		№ 76. Изучение спектра водорода.	12
		No 77 Vanaarpannin vi u Hannina humaarpannin vi ahak	
		№ 77. Качественный и полуколичественный спек-	(в течение
		тральный анализ металлов и сплавов.	(в течение семестра
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода.	семестра студенты
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и	семестра студенты выполняют по 3
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора.	семестра студенты выполняют по 3 лабораторные
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом	семестра студенты выполняют по 3 лабораторные работы из
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала.	семестра студенты выполняют по 3 лабораторные работы из нижеприве-
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня,
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова-
		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.	Квантовая	тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова-
2.	Квантовая физика.	тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излу-	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного ди-	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного диода.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного диода. № 88. Исследование космического излучения.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного диода. № 88. Исследование космического излучения. № 88. Исследование космического излучения.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного диода. № 88. Исследование космического излучения. № 89. Изучение пробега β-частиц в воздухе. № 92. Экспериментальное определение соотноше-	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного диода. № 88. Исследование космического излучения. № 89. Изучение пробега β-частиц в воздухе. № 92. Экспериментальное определение соотношений неопределенностей для фотонов.	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических
2.		тральный анализ металлов и сплавов. № 78. Исследование полупроводникового диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного диода. № 88. Исследование космического излучения. № 89. Изучение пробега β-частиц в воздухе. № 92. Экспериментальное определение соотноше-	семестра студенты выполняют по 3 лабораторные работы из нижеприве- денного перечня, включая работы по моделирова- нию физических

Итого:		20
	полупроводника.	
	№ 6.2. Определение энергии активации	
	в воздухе.	
	№ 6.4. Радиоактивность. Поглощение β-излучения	
	полупроводникового диода.	
	№ 6.3. Изучение вольт-амперной характеристики	
	Атом водорода.	
	№ 5.4. Фотоэффект. № 6.1. Изучение оптических спектров испускания.	
	помощью яркостного пирометра. № 5.4. Фотоэффект.	
	№ 5.3. Изучение законов теплового излучения с	
	ВИРТУАЛЬНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ:	
	та Холла.	
	носителей тока в полупроводнике методом эффек-	
	№ 98. Определение концентрации и подвижности	
	№ 97. Определение длины пробега альфа-частиц.	

Практические занятия (семинары) Раздел 1. Механика. Механические колебания. Статистическая физика и термодинамика

	Наименования	Польком променя променя полька и термодинами	Кол-
$N_{\underline{0}}$	разделов	Наименования практических занятий (семинаров)	во
	дисциплины	(семинаров)	часов
1.	Механика	1. Кинематика поступательного движения. Путь,	2,
		перемещение. Мгновенная и средняя скорости.	ФОС,
		Нормальное и тангенциальное составляющие	стр.
		ускорения. Движение тела, брошенного вертикально,	6-18
		горизонтально под углом к горизонту.	
		2. Динамика поступательного движения. Законы	2,
		Ньютона. Движение тела под действием нескольких сил	-
		(силы тяжести, упругости, трения) в горизонтальном и	стр.
		вертикальном направлениях, по наклонной плоскости.	19-38
		Движение связанных тел. Движение тела под действием	
		переменной силы. Импульс. Закон сохранения	
		импульса. Движение тела с переменной массой.	
		3. Энергия. Работа, мощность. Связь между силой и	2,
		потенциальной энергией. Связь между работой и	ФОС,
		изменением потенциальной и кинетической энергий.	стр.
		Закон сохранения энергии. Столкновение тел.	19-38
		4. Кинематика вращательного движения. Угловая	2,
		скорость, угловое ускорение. Связь между линейными	ФОС,
		и угловыми величинами	стр.
		5 H	39-57
		5. Динамика вращательного движения. Момент	3,
		инерции. Теорема Штейнера. Момент силы. Основное	ФОС,
		уравнение динамики вращательного движения.	стр.
		Кинетическая энергия вращательного движения.	39-57
		Момент импульса. Закон сохранения момента	
		импульса.	

		6. Релятивистская механика. Сокращение длины и	1,
		замедление времени в движущихся системах отсчета.	ФОС,
		Преобразование скоростей в релятивистской механике.	стр.
		Релятивистская масса и импульс. Взаимосвязь энергии	58-64
		и массы. Релятивистская энергия.	
2.	Механические	7. Сложение гармонических колебаний одного	2,
	колебания и	направления и взаимно перпендикулярных колебаний.	ФОС,
	волны.	Скорость, ускорение, возвращающая сила.	стр.
		Математический, физический пружинный маятник.	65-82
		Энергия гармонического осциллятора. Свободные	
		затухающие колебания. Коэффициент затухания,	
		логарифмический декремент. Вынужденные	
		гармонические колебания. Резонанс. Механические	
		волны, скорость и период механических волн.	
3	Статистическая	8. Молекулярно-кинетическая теория газов. Законы	1
	физика и	идеального газа. Уравнение Менделеева-Клапейрона.	ФОС,
	гермодинамика	Основное уравнение молекулярно-кинетической теории.	стр.
	гормодинамика	сеновное уравнение молекулирно кинети нескои теории.	83-107
		9. Функции распределения в классической физике.	1,
		Распределение Максвелла молекул идеального газа по	ΦOC,
		скоростям. Скорости теплового движения молекул.	стр.
		Распределение Больцмана. Барометрическая формула.	83-107
		10. Законы термодинамики. Внутренняя энергия	2,
		идеального газа. Работа газа при изменении его объема.	ФОС,
		Количество теплоты. Первое начало термодинамики.	стр.
			83-107
		изопроцессам. Адиабатический процесс. Теплоемкость	
		газов. Цикл Карно. Коэффициент полезного действия	
		тепловой и холодильной машины. Энтропия.	
		Определение изменения энтропии в термодинамических	
		системах.	
	Итого:		18
			-

Итого: Раздел 2. Электричество и электромагнетизм

$N_{\underline{0}}$	Наименования	Наименования практических занятий	Кол-
	разделов	(семинаров)	во
	дисциплины		часов
1.	Электричество и	1. Электростатика. Электрический заряд и его	3,
	электромагнетизм	свойства. Закон сохранения заряда. Закон Кулона.	ФОС,
		Напряженность электрического поля. Принцип	стр.
		суперпозиций. Электрическое поле диполя. Поток	113-
		вектора напряженности. Теорема Гаусса. Применение	136
		теоремы Гаусса для расчета электрических полей.	
		Работа по перемещению заряда в электрическом поле.	
		Потенциал. Разность потенциалов. Связь потенциала с	
		напряженность поля. Движение заряженных частиц в	
		электрическом поле	

1		
	одники в электрическом поле.	2,
	кий конденсатор. Соединение вованность. Связанные заряды.	ФОС,
Электрическое смеще		стр. 113-
	рядов. Энергия заряженного	136
конденсатора, электриче		130
•	неский ток. Сила и плотность	2,
	частка цепи в интегральной и	ФОС,
дифференциальной	форме. Сопротивление	стр.
111	овательное и параллельное	137-
соединение проводнико	в. Сторонние силы. Закон Ома	151
для замкнутой цепи и ,	для участка цепи, содержащей	
	вътметр в электрической цепи.	
	Работа и мощность тока. КПД	
	ветвленные цепи. Правила	
Кирхгофа.		
	Закон Био-Савара-Лапласа.	3,
	Магнитное поле прямого тока.	ФОС,
	вектора магнитной индукции и ное поле соленоида и тороида.	стр. 152-
Закон Ампера. Сила	=	166
-	егося заряда. Движение	100
	электрических и магнитных	
<u> </u>	к. Поведение контура с током в	
	а при перемещении контура с	
током в магнитном поле		
5. Магнитное поле в	веществе. Магнитный момент	2,
кругового тока. Эквива	лентные токи. Напряженность	ФОС,
магнитного поля,	его связь с вектором	стр.
	между векторами магнитной	152-
, ,	остью. Кривая намагничивания	166
для ферромагнетиков.		
-	индукция. Основной закон	2,
=	ндукции. Правило Ленца.	ФОС,
Возникновение ЭДС		стр.
поступательно или	вращающихся контурах в	167-
постоянном магнитном		177
контурах, находящихся ЭДС самоиндукции.	в переменном магнитном поле. Индуктивность. Энергия	
магнитного поля.	индуктивность. Энсргия	
	олебания и волны. Свободные	2,
<u> </u>	ия в электрическом контуре.	ФОС,
Период колебаний. 3	-	стр.
-	о сопротивления. Свободные	178-
7 =	я. Коэффициент затухания,	187
	емент затухания, добротность.	
	я. Резонанс. Электромагнитные	
	олны, период, скорость	
распространения электр	омагнитных волн.	
Итого:		16

Раздел 3. Волновая оптика. Квантовая физика

азды	і 3. Волновая оптика	. Квантовая физика	_
$N_{\underline{0}}$	Наименования	Наименования практических занятий	Кол-во
	разделов	(семинаров)	часов
	дисциплины		
1.	Волновая оптика.	1. Интерференция света. Условия максимумов и	2,
		минимумов интерференции. Расчет	ФОС,
		интерференционной картины от двух когерентных	стр. 193-
		источников света. Интерференция в тонких пленках:	201
		полосы равного наклона и равной толщины. Кольца	201
		Ньютона.	
		2. Дифракция света. Метод зон Френеля. Дифракция	2
			2,
		Френеля на простейших преградах. Дифракция на	ФОС,
		одной щели. Дифракционная решетка. Угловая и	стр. 201-
		линейная дисперсия. Разрешающая сила.	209
		3. Дисперсия света. Нормальная и аномальная	1,
		дисперсия. Прохождение света через призму.	ФОС,
		Anti-operation rependently to the second sec	стр. 210-
			216
		4. Поляризация света. Степень поляризации. Закон	1,
		Малюса. Вращение плоскости поляризации.	ФОС,
			стр. 210-
			216
2.	Квантовая	5. Тепловое излучение. Закон Стефана-Больцмана.	1,
	физика	Законы Вина. Формула Планка.	ФОС,
			стр. 217-
			236
		6. Фотоэффект. Энергия, импульс, масса фотонов.	1,
		Уравнение Эйнштейна для внешнего фотоэффекта.	ФОС,
			стр. 217-
			236
		7. Гипотеза де-Бройля.	1,
			ФОС,
			стр. 217-
			236
		8. Уравнение Шредингера. Поведение частицы в	2,
		потенциально яме с бесконечно высокими стенками.	ФОС,
		Вероятность прохождения частицы через	стр. 217-
		потенциальный барьер. Квантовые числа.	236
		9. Атом. Постулаты Бора. Скорость, радиус, энергия	2,
		электрона в водородоподобных атомах. Обобщенная	ФОС,
		формула Бальмера.	стр. 237-
		10.0	268
		10. Ядро. Правила смещения при α-, β- распадах.	1,
		Закон радиоактивного распада. Энергия связи.	ФОС,
		Энергия, выделяемая или поглощаемая в ядерных	стр. 237-
	Иторо:	реакциях.	268
	Итого:		14

Учебно-методическое и информационное обеспечение дисциплины (модуля) Основная литература

- 1. Трофимова Т.И. Курс физики: учебное пособие для вузов М.: Academia, 2005.
- 2. Трофимова Т.И. Курс физики: учебное пособие для инженерно-технических специальностей вузов М.: Academia, 2007.
- 3. Волькенштейн В.С. Сборник задач по общему курсу физики: для студентов технических вузов СПб: Книжный мир, 2005.
- 4. Волькенштейн В.С. Сборник задач по общему курсу физики: для студентов технических вузов СПб: Книжный мир, 2008.
- 5. Савельев И.В. Основы теоретической физики [Электронный ресурс]: учебник для студентов нетеоретических специальностей вузов, в 2-х т. СПб: Лань, 2005.
- 6. Савельев И. В. Сборник вопросов и задач по общей физике [Электронный ресурс]: учебное пособие СПб: Лань, 2007.
- 7. Фриш С.Э., Тиморева А.В. Курс общей физики [Электронный ресурс]: учебник для студентов технических вузов и университетов, в 3-х т. СПб: Лань, 2008 и 2009.
- 8. Бабаев В.С., Легуша Ф.Ф. Корректирующий курс физики [Электронный ресурс] СПб: Лань, 2011.
- 9. Детлаф А.А., Яворский Б.М. Курс физики. М.: Издательский центр «Academia», 2014. 720с.
- 10. Трофимова Т.И. Курс физики. М.: Издательский центр «Academia», 2014. 560с. Дополнительная литература
- 1. Рогачев Н.М. и др. Решения задач по курсу общей физики: учебное пособие для студентов вузов, обучающихся по техническим и технологическим направлениям и специальностям СПб: Лань, 2008.
- 2. Трофимова Т.И., Павлова З.Г. Сборник задач по курсу физики с решениями: учебное пособие для студентов вузов М.: Высшая школа, 2003.
- 3. Жуков К.Г. Модельное проектирование встраиваемых систем в LabVIEW [Электронный ресурс]: пособие для студентов соответствующих специальностей технических университетов и вузов, дипломников и аспирантов, слушателей курсов повышения квалификации М.: ДМК ПРЕСС, 2011.
- 4. Гринкруг М.С., Вакулюк А.А. Лабораторный практикум по физике [Электронный ресурс] СПб: Лань, 2012.
- 5. Сборник задач по физике [Электронный ресурс] / под ред. Р.И. Грабовского СПб: Лань, 2012.
- 6. Александров И.В. и др. Современная физика [Электронный ресурс]: учебное пособие для студентов всех форм обучения, обучающихся по техническим и технологическим направлениям и специальностям Уфа: УГАТУ, 2008.
- 7. Лазарев В.В. Изучение сложения гармонических колебаний с применением программной среды LabVIEW и АЦП NI USB-6009 [Электронный ресурс]: лабораторный практикум по дисциплине «Современная физика» Уфа: УГАТУ, 2008.
- 8. Михайлов Г.П. Моделирование молекулярных структур [Электронный ресурс]: лабораторный практикум по дисциплине «Современная физика» Уфа: УГАТУ, 2008.
- 9. Сагитова Э.В., Строкина В.Р., Хайретдинова А.К. Тестовые задания по дисциплине «Физика» раздел «Волновая и квантовая оптика»: практикум Уфа: УГАТУ, 2006.

Интернет-ресурсы (электронные учебно-методические издания, лицензионное программное обеспечение)

- 1. Открытая физика 1.0 (1 и 2 части). (Открытая Физика версия 2,6 часть 1 рег. Номер JE647788)
- 2. Открытая физика 2.0 (1 часть). (Открытая Физика версия 2,6 часть 2 рег. Номер JE668265)

- 3. Виртуальная лаборатория физики 2.0. (Физика. Практикум 0320600628 от 12.05.2006)
- 4. Учебно-методический комплекс «Физика».
- (Часть 1. Механика. Молекулярная физика и термодинамика

(№ гос. регистрации 0320400091 от 05.02.2004),

Часть 2. Электростатика. Постоянный ток. Электромагнетизм

(№ гос. регистрации 0320400546 от 28.09.2004),

Часть 3. Оптика. Квантовая и атомная физика. Элементы физики атомного ядра и элементарных частиц

(№ гос. регистрации 0320400963 от 28.09.2004)

- 5. Программы для моделирования молекулярных систем: Chem Office (Serial Number 201-333874-8236), Hyper Chem 8 (Serial # 12-800-1501700171).
- 6.На сайте библиотеки http://library.ugatu.ac.ru/ в разделе «Информационные ресурсы», подраздел «Доступ к БД» размещены ссылки на интернет-ресурсы.

Методические указания к практическим занятиям

- 1. Шатохин С.А., Сагитова Э.В. Основы молекулярной физики и термодинамики. Методические указания к практическим занятиям по курсу общей физики, 2005.
- 2. Трофимова Е.В. Механика. Методические указания к практическим занятиям по курсу общей физики, 2003.
- 3. Сагитова Э.В., Хайретдинова А.К., Строкина В.Р., Трофимова Е.В. Тестовые задания по разделу «Физические основы механики», «Молекулярная физика и термодинамика». Практикум по дисциплине «Физика», 2007.
- 4. Чембарисова Р.Г. Неинерциальные системы отсчета. Методические указания к практическим занятиям по дисциплине «Физика», 2007.
- 5. Строкина В.Р., Шатохин С.А. Электричество и магнетизм. Методические указания к практическим занятиям по курсу общей физики, 2003.
- 6. Сагитова Э.В., Строкина В.Р., Хайретдинова А.К. Тестовые задания по разделу «Электричество и магнетизм» Практикум, 2006.
- 7. Строкина В.Р. Физика. Электричество и магнетизм: Практикум. 2009.
- 8. Хайретдинова А.К., Шатохин С.А. Волновая и квантовая оптика. Методические указания к практическим занятиям по курсу общей физики, 2003.
- 9. Сагитова Э.В., Строкина В.Р., Хайретдинова А.К. Тестовые задания. Раздел «Волновая и квантовая оптика» Практикум, 2006.
- 10. Афанасьева А.М., Климчук М.А. «Волновая и квантовая оптика»: Методические указания к практическим занятиям покурсу Физики, 2011.

http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_pract.rar

Методические указания к лабораторным занятиям

І. Раздел

- № 1. Определение моментов инерции твердых тел методом трифилярного подвеса.
- № 2. Изучение законов сохранения момента импульса и энергии.
- № 3. Изучение законов вращательного движения твердого тела.
- № 4. Определение моментов инерции твердых тел методом крутильных колебаний.
- № 5. Определение моментов инерции тел произвольной формы.
- № 6. Изучение законов поступательного движения.
- № 7. Изучение законов соударения тел.
- № 9. Определение ускорения свободного падения с помощью математического и физического маятников.
- № 10. Изучение колебаний пружинного маятника.
- № 11а. Изучение собственных колебаний струны.
- № 12. Определение ускорения силы тяжести при свободном падении тела.
- № 13. Изучение закона сохранения энергии с помощью маятника Максвелла.
- № 14. Наклонный маятник.

- № 15. Изучение закона сохранения момента импульса с помощью гироскопа и определение скорости его прецессии.
- Изучение сложения гармонических колебаний с применением АЦП NI USB-6009: Лабораторный практикум, «Современная физика».
- № 107. Изучение законов сохранения импульса и энергии при столкновениях кареток Флетчера.
- № 16. Определение коэффициента Пуассона для воздуха методом адиабатического расширения.
- № 17. Экспериментальная проверка уравнения состояния и законов идеального газа.
- № 19. Определение коэффициента Пуассона воздуха акустическим методом.
- № 21. Исследование температурной зависимости удельной теплоемкости алюминия методом охлаждения.
- № 23. Определение коэффициента вязкости воздуха и кинематических характеристик движения его молекул.
- № 24. Изучение газовых законов и определение коэффициента Пуассона газа методом Клемана-Дезорма.
- № 25. Определение коэффициентов теплопроводности металлов.
- № 26. Определение коэффициентов теплопроводности твердых диэлектриков.
- № 27. Определение коэффициента теплопроводности воздуха и кинематических характеристик теплового движения его молекул.
- № 28. Определение удельной теплоты плавления олова и изменения его энтропии при нагревании и плавлении.
- № 29. Изучение взаимосвязи параметров состояния идеального газа и газовых законов.
- № 116. Определение отношения теплоемкостей газа при постоянном давлении и объеме.
- № 119. Определение отношения теплоемкостей газа при постоянном давлении и объеме резонансным методом.
- № 122. Определение теплоты парообразования воды.
- № 123. Определение коэффициента вязкости воздуха капиллярным методом.
- № 124. Определение молекулярной массы и плотности газа методом откачки.
- № 125. Определение теплоемкости твердых тел.
- № 127. Определение коэффициента теплоемкости газа методом нагретой нити.
- № 128. Определение энтропии твердого тела при его нагревании и плавлении.
- № 130. Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения жидкости.

http://ugatu.su/assets/files/documents/study/metod/PHYS/met ukaz lab 1 razdel.rar

2. Раздел

- № 31. Исследование электростатического поля.
- № 32. Изучение законов постоянного тока.
- № 33. Изучение законов постоянного тока. Исследование зависимости КПД источника тока от сопротивления нагрузки.
- № 34. Экспериментальная проверка правил Кирхгофа.
- № 35. Изучение термоэлектронной эмиссии металлов. Определение удельного заряда электрона.
- № 36. Изучение термоэлектронной эмиссии металлов. Определение работы выхода электрона.
- № 37. Изучение процессов заряда и разряда конденсатора.
- № 38. Измерение электрических свойств твердых диэлектриков.
- № 39. Определение электродвижущей силы источника напряжения методом компенсации.
- № 41. Изучение газового разряда.
- № 43. Изучение диэлектрических свойств сегнетоэлектриков.
- № 45. Определение ЭДС источника тока с помощью закона Ома.

- № 46. Определение удельного заряда электрона методом магнетрона.
- № 47. Определение горизонтальной составляющей магнитного поля Земли.
- № 48. Исследование затухающих колебаний в колебательном контуре.
- № 49. Изучение вынужденных колебаний.
- № 50. Изучение электронно-лучевого осциллографа.
- № 52. Изучение свойств ферромагнетиков и явления гистерезиса для железа.
- № 53. Изучение магнитного поля соленоида.
- № 54. Изучение явления взаимной индукции.
- № 56. Определение постоянной Холла.
- № 57. Изучение вихревого электрического поля.
- № 58. Изучение электрических процессов в простых электрических цепях.
- № 59. Изучение электрических колебаний в связанных контурах.
- № 60. Изучение магнитного поля прямолинейного тока.

http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_lab_2_razdel.rar

3. Раздел

- № 61. Изучение интерференции света.
- № 62. Определение показателей преломления света в жидких и твердых телах.
- № 63а. Изучение оптических характеристик дифракционной решетки.
- № 64. Экспериментальное изучение законов теплового излучения.
- № 65. Определение длины световой волны с помощью дифракционной решетки.
- № 66. Изучение поляризованного света и внутренних напряжений в твердых телах оптическим методом.
- № 67. Изучение дисперсии света.
- № 68. Изучение явления поглощения света веществом.
- № 69. Изучение дифракции света на двумерной дифракционной решетке.
- № 70. Изучение вращения плоскости поляризации в растворах оптически активных веществ.
- № 71. Изучение законов теплового излучения.
- № 72. Изучение интерференции света в клиньях.
- № 73. Изучение дифракции света.
- № 76. Изучение спектра водорода.
- № 77. Качественный и полуколичественный спектральный анализ металлов и сплавов.
- № 78. Исследование полупроводникового диода.
- № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора.
- № 80а. Определение постоянной Планка методом задерживающего потенциала.
- № 80. Исследование температурной зависимости сопротивления металлов и полупроводников.
- № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе.
- № 84. Определение потенциала возбуждения атома методом Франка и Герца.
- № 85. Дифракция электронов.
- № 86. Исследование зависимости теплового излучения абсолютно черного тела.
- № 87. Изучение принципа работы туннельного диода.
- № 88. Исследование космического излучения.
- № 89. Изучение пробега β частиц в воздухе.
- № 92. Экспериментальное определение соотношений неопределенностей для фотонов.
- № 93. Изучение явления внешнего фотоэффекта.
- № 95. Изучение бета активности.
- № 97. Определение длины пробега альфа-частиц.

№ 98. Определение концентрации и подвижности носителей тока в полупроводнике методом эффекта Холла.

$\underline{http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_lab_3_razdel.rar}$

6.6. Методические указания к курсовому проектированию и другим видам самостоятельной работы

- 1. Шатохин С.А., Трофимова Е.В., Михайлов Г.П. Сборник индивидуальных заданий по разделам: «Физические основы механики», «Молекулярная физика и термодинамика», 2004.
- 2. Шатохин С.А., Трофимова Е.В., Михайлов Г.П. Сборник индивидуальных заданий по разделу «Электричество и магнетизм», 2004.
- 3. Шатохин С.А., Трофимова Е.В., Михайлов Г.П. Сборник индивидуальных заданий по разделу «Оптика. Атомная физика», 2004.

http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_RGR.rar

Материально-техническое обеспечение дисциплины Перечень лабораторий, компьютерных классов, мастерских, специально

оборудованных аудиторий	терных классов, мастерских, специально
Учебная лаборатория	Название и номер лабораторной работы
Учебная лаборатория современной физики: «Механика».	№ 1. Определение моментов инерции твердых тел методом трифилярного подвеса.
	№ 2. Изучение законов сохранения момента импульса и энергии.
	№ 3. Изучение законов вращательного движения твердого тела.
	№ 4. Определение моментов инерции твердых тел методом крутильных колебаний.
	№ 5. Определение моментов инерции тел произвольной формы.
	№ 6. Изучение законов поступательного движения.
	№ 7. Изучение законов соударения тел. № 9. Определение ускорения свободного
	падения с помощью математического и физического маятников.
	№ 10. Изучение колебаний пружинного маятника.
	№ 11a. Изучение собственных колебаний струны.
	№ 12. Определение ускорения силы тяжести при свободном падении тела.
	№ 13. Изучение закона сохранения энергии с помощью маятника Максвелла.
	№ 14. Наклонный маятник.
	№ 15. Изучение закона сохранения момента
	импульса с помощью гироскопа и
	определение скорости его прецессии.
	№ 107. Изучение законов сохранения
	импульса и энергии при столкновениях

	кареток Флетчера с помощью устройства CASSY.
Учебная лаборатория современной физики: «Молекулярная физика».	, i
	№ 17. Экспериментальная проверка уравнения состояния и законов идеального газа.
	№ 19. Определение коэффициента Пуассона воздуха акустическим методом. № 21. Исследование температурной
	зависимости удельной теплоемкости алюминия методом охлаждения.
	№ 23. Определение коэффициента вязкости воздуха и кинематических характеристик движения его молекул.
	№ 24. Изучение газовых законов и определение коэффициента Пуассона газа методом Клемана-Дезорма.
	№ 25. Определение коэффициентов теплопроводности металлов.
	№ 26. Определение коэффициентов теплопроводности твердых диэлектриков.
	№ 27. Определение коэффициента теплопроводности воздуха и кинематических характеристик
	теплового движения егомолекул. № 28. Определение удельной теплоты плавления олова и изменения его
	энтропии при нагревании и плавлении. № 29. Изучение взаимосвязи параметров состояния идеального газа и газовых законов.
	№ 116. Определение отношения теплоемкостей газа при постоянном давлении и объеме.
	№ 119. Определение отношения теплоемкостей газа при постоянном давлении и объеме резонансным
	методом. № 122. Определение теплоты парообразования воды.
	№ 123. Определение коэффициента вязкости воздуха капиллярным методом. № 124. Определение молекулярной массы и
	плотности газа методом откачки. № 125. Определение теплоемкости твердых
	тел. № 127. Определение коэффициента теплоемкости газа методом нагретой нити.

	№ 128. Определение энтропии твердого тела
	при его нагревании и плавлении.
	№ 130. Определение коэффициента взаимной
	диффузии воздуха и паров воды по
	скорости испарения жидкости.
Учебная лаборатория современной физики:	№ 31. Исследование электростатического
«Электричество».	поля.
	№ 32. Изучение законов постоянного тока.
	№ 33. Изучение законов постоянного тока.
	Исследование зависимости КПД
	источника тока от сопротивления нагрузки.
	№ 34. Экспериментальная проверка правил
	Кирхгофа.
	№ 35. Изучение термоэлектронной эмиссии
	металлов. Определение удельного
	заряда электрона.
	№ 36. Изучение термоэлектронной эмиссии
	металлов. Определение работы
	выхода электрона.
	№ 37. Изучение процессов заряда и разряда
	конденсатора.
	№ 38. Измерение электрических свойств
	твердых диэлектриков. № 39. Определение электродвижущей силы
	источника напряжения методом
	компенсации.
	№ 41. Изучение газового разряда.
	№ 43. Изучение диэлектрических свойств
	сегнетоэлектриков.
	№ 45. Определение ЭДС источника тока с
	помощью закона Ома.
Учебная лаборатория современной физики:	№ 46. Определение удельного заряда
«Электромагнетизм».	электрона методом магнетрона.
	№ 47. Определение горизонтальной
	составляющей магнитного поля Земли.
	№ 48. Исследование затухающих колебаний
	в колебательном контуре.
	№ 49. Изучение вынужденных колебаний.
	№ 50. Изучение электронно-лучевого
	осциллографа.
	№ 52. Изучение свойств ферромагнетиков и
	явления гистерезиса для железа.
	№ 53. Изучение магнитного поля соленоида.
	№ 54. Изучение явления взаимной индукции.
	№ 56. Определение постоянной Холла.
	№ 57. Изучение вихревого электрического поля.
	лоля. № 58. Изучение электрических процессов в
	простых электрических процессов в
	№ 59. Изучение электрических колебаний в
	1 Steme Stemp Teekin Rosteounin B

	связанных контурах. № 60. Изучение магнитного поля
	№ 60. Изучение магнитного поля прямолинейного тока.
Vчебная пабопатория совпеменной физики:	-
Учебная лаборатория современной физики: «Оптика».	№ 61. Изучение интерференции света. № 62. Определение показателей преломления света в жидких и твердых телах. № 63а. Изучение оптических характеристик дифракционной решетки. № 64. Экспериментальное изучение законов теплового излучения. № 65. Определение длины световой волны с помощью дифракционной решетки. № 66. Изучение поляризованного света и внутренних напряжений в твердых телах оптическим методом. № 67. Изучение дисперсии света. № 68. Изучение явления поглощения света веществом. № 69. Изучение дифракции света на двумерной дифракционной решетке. № 70. Изучение вращения плоскости
	поляризации в растворах оптически активных веществ. № 71. Изучение законов теплового излучения. № 72. Изучение интерференции света в клиньях. № 73. Изучение дифракции света.
Учебная лаборатория современной физики:	№ 76. Изучение спектра водорода.
учеоная лаооратория современной физики. «Атомная физика».	№ 77. Качественный и полуколичественный спектральный анализ металлов и сплавов. № 78. Исследование полупроводникового
	 диода. № 79. Изучение статистических характеристик и определение коэффициента усиления транзистора. № 80а. Определение постоянной Планка методом задерживающего потенциала. № 80. Исследование температурной зависимости сопротивления металлов и полупроводников. № 81. Изучение характеристики счетчика Гейгера-Мюллера и поглощения радиоактивного излучения в веществе. № 84. Определение потенциала возбуждения атома методом Франка и Герца. № 85. Дифракция электронов. № 86. Исследование зависимости теплового излучения абсолютно черного тела. № 87. Изучение принципа работы туннельного диода.

№ 88. Исследование космического
излучения.
№ 89. Изучение пробега β - частиц в воздухе.
№ 92. Экспериментальное определение
соотношений неопределенностей для
фотонов.
№ 93. Изучение явления внешнего
фотоэффекта.
№ 95. Изучение бета - активности.
№ 97. Определение длины пробега альфа-
частиц.
№ 98. Определение концентрации и
подвижности носителей тока в
полупроводнике методом эффекта
Холла.

Учебная лаборатория современной физики: «Молекулярная физика».

Учебная лаборатория современной физики: «Механика».

Учебная лаборатория современной физики: «Электричество».

Учебная лаборатория современной физики: «Электромагнетизм».

Учебная лаборатория современной физики: «Оптика».

Учебная лаборатория современной физики: «Атомная физика».

Дисплейный класс.

Большая физическая аудитория.

Кабинет лекционных демонстраций.

Учебно-научно-исследовательская лаборатория проблем современной физики (две аудитории).

Учебно-научно-исследовательская лаборатория молекулярной спектроскопии.

Учебно-научно-исследовательская лаборатория физики наноматериалов (две аудитории).

Учебно-научно-исследовательская лаборатория моделирования физических процессов.

Технические средства обучения

Лабораторные установки, оборудование, мультимедийные средства, наборы слайдов или кинофильмы, аудиовизуальные, компьютерные и телекоммуникационные средства.

Адаптация рабочей программы для лиц с ОВЗ

Данное направление подготовки входит в Перечень специальностей и направлений подготовки, при приеме на обучение по которым поступающие проходят обязательные предварительные медицинские осмотры (обследования) в порядке, установленном при заключении трудового договора или служебного контракта по соответствующей должности или специальности, утвержденный постановлением Правительства Российской Федерации от 14 августа 2013 г. № 697. На основании этого на данное направление подготовки лица, требующие индивидуальных условий обучения, не принимаются.

ЗАКЛЮЧЕНИЕ

Научно-методического совета

по УГСН 13.00.00 Электро- и теплотехника.

Настоящим подтверждаю, что представленный комплект аннотаций рабочих программ учебных дисциплин по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» по направленности «Электромеханика» реализуемой по очной форме обучения, соответствует рабочим программам учебных дисциплин основной профессиональной образовательной программы.

Председатель НМС по УГСН 13.00.00

Исмагилов Ф.Р.

«*28*»<u>09</u>201<u>5</u>г.