МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра <u>Авиационной теплотехники и теплоэнергетики</u> *название кафедры*

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«<u>Численные методы расчета теплогидродинамических процессов</u>» название дисциплины

Направление подготовки (специальность)

<u>13.03.01 Теплоэнергетика и теплотехника</u> (шифр и наименование направления подготовки (специальности)

Направленность подготовки (профиль) <u>Тепловые электрические станции</u>

(наименование направленности/ профиля)

Квалификация выпускника <u>бакалавр</u> (наименование квалификации)

Форма обучени	Я	
	очная	
(очная, очно-за	очная (вечерняя), заочная)	
	УФА <u>201.</u>	<u>5</u>
	бог	
Исполнитель:	доцент А.Н. Гришин	
_		
Заведующий ка	федрой: <u>Ф.Г. Бакиров</u>	
- /	Фамилия И.О.	

Место дисциплины в структуре образовательной программы

Дисциплина «Численные методы расчета теплогидродинамических процессов» является дисциплиной вариативной части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника, утвержденного приказом Министерства образования и науки Российской Федерации от «01» октября 2015г. № 1081.

Целью освоения дисциплины является: изучение постановок задач тепломассообмена, соответствующих методов численного решения дифференциальных уравнений и анализа полученного решения.

Задачи:

- 1. Изучить основные свойства дифференциальных уравнений в частных производных 2-го порядка, используемых для описания процессов тепломассообмена и движения жидкости и газа.
- 2. Изучить постановки задач для уравнений гиперболического, параболического и эллиптического типов.
- 3. Изучить формулировки краевых условий для соответствующих типов уравнений.
- 4. Изучить методы конечных разностей.
- 5. Изучить методы взвешенных невязок.
- 6. Изучить методы конечных элементов.
- 7 Изучить способы построения сеток в конечно-разностных и конечно-элементных методах.

Примечание: цели и задачи освоения дисциплины копируются из рабочей программы учебной дисциплины

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

No	Формируемые	Код	Знать	Уметь	Владеть
	компетенции				
1	способность к	ОК-7	основные	пользоваться	навыком
	самоорганизации		источники	литературой по	изучения
	И		информации по	численным	литературы по
	самообразованию		численным	методам	численным
			методам	расчета	методам

			расчета теплогидро-	теплогидро- динамических	расчета теплогидро-
			динамических	процессов, а	динамических
			процессов	также	процессов, а
				анализировать	также анализа
				полученную	полученной
				информацию	информации.
2	способность	ПК-2	постановки	ставить задачи	навыком
	проводить		задач для одно-	расчета тепло-	проведения на
	расчеты по		мерных и дву-	проводности в	компьютере
	ТИПОВЫМ		мерных	двумерных	численного
	методикам,		дифференци-	областях раз-	эксперимента
	проектировать		альных урав-	личной конфи-	по изучению
	технологическое		нений гипер-	гурации	теплогидро-
	оборудование с		болического,		динамических
	использованием		параболичес-		процессов
	стандартных		кого и эллип-		
	средств		тического ти-		
	автоматизации		ПОВ		
	проектирования в				
	соответствии с				
	техническим				
	заданием				
3	способностью к	ПК-4	основные	выполнять	навыком
	проведению		методы	численное	выполнения
	экспериментов по		построения	моделирование	расчетов
	заданной		сеток конечно-	методом	температурных
	методике,		разностных и	конечных	полей методом
	обработке и		конечно-	элементов в	конечных
	анализу		элементных	двумерных	элементов и их
	полученных		схем	областях	анализа в
	результатов с			различной	двумерных
	привлечением			конфигурации	областях
	соответствующего				различной
	математического				конфигурации
	аппарата				

Содержание разделов дисциплины

(пример заполнения)

$N_{\underline{0}}$	Наименование и содержание разделов
1	Введение.
	Цели и задачи курса. Вычислительный эксперимент и его роль в
	современных науке и технике. Постановка вычислительного эксперимента.
2	Элементы теории дифференциальных уравнений в частных
2	Элементы теории дифференциальных уравнений в частных производных 2-го порядка.
2	

Постановка задач для уравнений гиперболического типа. Постановка задач для уравнений параболического типа. Постановка задач для уравнений эллиптического типа. Понятие о корректности краевой задачи.

3 Математические модели в задачах тепломассообмена.

Дифференциальные уравнения, используемые для описания процессов тепломассообмена. Форма записи дифуравнений в виде обобщенного закона сохранения произвольной переменной. Форма записи дифуравнений в компактном векторном виде. Дивергентная форма записи уравнений в частных производных. Начальные и граничные условия в задачах тепломассообмена. Начальные условия. Граничные условия на твердых стенках, на линии симметрии расчетной области, на входной и выходной границах, условия периодического типа. Особенность вычислительных граничных условий.

4 Методы конечных разностей. Общие вопросы.

Сущность метода конечных разностей (МКР). Погрешность аппроксимации ДУЧП. Явная и неявная разностные схемы. Понятие согласованности разностных схем. Понятие устойчивости разностных схем. Понятие сходимости разност-ных схем. Теорема Лакса (без доказательства). Точность решения. Вычислительная эффективность. Некоторые методы построения разностных схем – разложение функций в ряд Тэйлора, схемы предикторкорректор. Исследование устойчивости разностных схем. Метод Неймана. Условие устойчивости Куранта-Фридрихса-Леви (КФЛ). Дифференциальные прибли-жения разностных схем. Неявная (схемная) искус-ственная вязкость и дисперсия разностных схем. Определение диссипации и дисперсии разностных схем. Определение численной диффузии при дифференциальных приближений разностных схем. Понятие абсолютной устой-чивости разностных схем. Сеточное число Рейнольдса.

- Методы конечных разностей для решения уравнений тепломассообмена. Разностные схемы для решения одномерного уравнения теплопроводности комбинированная разностная схема и ее частные случаи. Трудности, возникающие при применении обычных «одномерных» методов к решению многомерных уравнений теплопроводности. Неявные методы переменных направлений для решения двумерных и трехмерных уравнений теплопроводности. Методы дробных шагов или методы расщепления для решения уравнения теплопроводности. Метод установления. Конечно-разностные схемы для решения уравнений Лапласа и Пуассона. Методы решения систем алгебраических уравнений прямые и итерационные. Метод прогонки. Метод Гаусса-Зейделя. Метод последовательной верхней релаксации. Метод последовательной верхней релаксации. Метод последовательной верхней релаксации.
- 6 Метод взвешенных невязок.

Приближенное решение. Базисные функции. Сущность метода взвешенных невязок. Частные случаи метода взвешенных невязок – метод подобластей, метод коллокаций, метод наименьших квадратов, метод Галёркина, обобщенный метод Галёркина. Граничный, внутренний и смешанный методы. Трудности реализации традиционного метода Галёркина.

7 **Методы конечных элементов.** Аппроксимация решений дифуравнений и использование базисных функций.

краевых условий помощью базисных функций. Выполнение Одновременная аппроксимация решений дифуравнений и краевых условий. (МКЭ). Понятие конечных элементов конечного элемента. Аппроксимация функций с помощью МКЭ. Глобальные и локальные базисные функции. Аппроксимация решений дифуравнений и требования Слабая формулировка И метод Галёркина. Процесс ансамблирования. Приведенные матрицы. Обобщение конечно-элементных алгоритмов на двумерные и трехмерные задачи. Решение стационарной задачи теплопроводности в многосвязной расчетной области с помощью МКЭ. Использование в МКЭ вариационного принципа.

8 Методы построения сеток.

Построение сеток в методах конечных разностей. Построение сеток на основе метода ТФКП. Построение сеток на основе алгебраических уравнений. Построение сеток на основе дифференциальных уравнений. Построение сеток в методах конечных элементов. Метод суперэлементов. Метод адаптивной генерации сетки. Метод последовательного подразбиения сетки. Метод сокращения области.

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.

ЗАКЛЮЧЕНИЕ

Научно-методического совета

по направлению подготовки (специальности)
по УГСН 13.00.00 Электро- и теплотехника
(шифр и наименование образовательной программы)
Настоящим подтверждаю, что представленный комплект аннотаций рабочих
программ учебных дисциплин по направлению подготовки (специальности)
13.03.01 Теплоэнергетика и теплотехника (бакалавриат)
(шифр и наименование образовательной программы)
по профилю (направленности) Тепловые электрические станции,
реализуемой по форме обучения очной,
(указать нужное: очной, очно-заочной (вечерней), заочной)
соответствует рабочим программам учебных дисциплин указанной выше
образовательной программы.
ооразовательной программы.
Председатель НМС Исмагилов Ф.Р.
подпись
«_26» <u>06</u> 2015_г
дата