МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Авиационной теплотехники и теплоэнергетики название кафедры

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

«Тепломассообмен» Название дисциплины

Направление подготовки (специальность)

<u>13.03.01 — Теплоэнергетика и теплотехника</u> (шифр и наименование направления подготовки (специальности)

Направленность подготовки (профиль)
<u>Тепловые электрические станции</u>
(наименование направленности/ профиля)

Квалификация выпускника
<u>бакалавр</u>
(наименование квалификации)

	Φ				
	<u>_очная</u>				
очная,	0чно-30	аочная	(вечерня	яя), за	очная)

УФА <u>2015</u> год

Исполнитель: _профессор каф.АТиТ_Цирельман Н.М. Должность Фамилия И.О.

Заведующий кафедрой: <u>Бакиров Ф.Г.</u> Φ амилия И.О.

Место дисциплины в структуре образовательной программы

Дисциплина «Тепломассообмен» является дисциплиной базовой части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника, утвержденного приказом Министерства образования и науки Российской Федерации от «01» 10 2015 г. № 1081.

Целью освоения дисциплины является: овладение студентами умениями и навыками расчета теплотехнических процессов в современных двигателях летательных аппаратов.

Конечной целью обучения тепломассообмену является твердое овладение студентами знаниями, умениями и навыками относительно аналитических и экспериментальных методов определения характеристик процессов тепломассообмена, методов решения задач тепломассопередачи и анализа полученных результатов.

Задачи:

- 1. Сформировать знания о механизмах переноса теплоты и вещества.
- 2. Изучить основные закономерности процессов тепломассопереноса в современных технических устройствах, их технологических реализациях и тенденциях развития.
- 3. Изучить основные технические характеристики тепломассообменного оборудования

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине.

$N_{\underline{0}}$	Формируемые компетенции	Код	Знать	Уметь	Владеть
1.	Способность проводить расчеты по типовым методикам, проектировать технологическое оборудование с использованием стандартных средств автоматизации проектирования в соответствии с техническим заданием	ПК-2	основные понятия о механизмах переноса теплоты и вещества, закономерности и расчетные соотношения тепломассообмена; методы расчета процессов тепломассообмена;	обмена в энергетических системах;	навыками использования справочного материала по процессам тепломассобмена;
2.	Способностью к проведению экспериментов по заданной методике, обработке и анализу полученных результатов с привлечением соответствующего математического аппарата	ПК-4	о путях интенсификации тепломассопереноса в современных технических устройствах и технологических процессах с целью ресурсо- и энергосбережения.	пользоваться справочной и другой теплотехнической литературой; проводить расчеты теплового состояния элементов конструкции теплоэнергетических устройств.	основами работы с программным обеспечением и со средствами вычислительной техники для решения задач тепломассообмена; навыками использования средств теплотехнических измерений.

Содержание разделов дисциплины

№	Наименование и содержание разделов
1	Основные понятия и уравнения теплопроводности. Аналитические и численные ме-
1	тоды определения нестационарных полей.
	Теплопроводность твердых тел, жидкостей и газов, температура, температурное поле, изо-
	термическая поверхность, изотерма, градиент температуры, плотность теплового потока.
	Гипотеза Фурье и ее физическое содержание. Вывод уравнения Фурье. Краевые условия
	задачи о температурном поле. Метод разделения переменных и метод интегральных пре-
	образований в решении задач нестационарной теплопроводности с граничными условия-
	ми I II, III и IV рода для тел простейшей формы с постоянными теплофизическими харак-
	теристиками (ТФХ) среды. Метод элементарных тепловых балансов, метод сеток (явная и
	неявная схемы) и метод конечных элементов применительно к численному расчету темпе-
	ратурных полей при зависящих от температуры ТФХ среды. Аналоговое моделирование
	физических полей.
2	Стационарная теплопроводность в телах простейшей формы. Тепловая изоляция.
	Решение задачи о стационарном температурном поле одно- и многослойной плоской и цилиндри-
	ческой стенки при граничных условиях I и III рода. Нелинейная и стационарная теплопроводность
	в пластине. Расчет тепловой изоляции трубопроводов
3	Основные уравнения переноса теплоты в движущейся среде. Элементы теории подо-
	бия и физического моделирования явлений теплопереноса.
	Уравнения неразрывности потока, движения жидкости и газа в форме Навье-Стокса и переноса
	теплоты (энергии) Фурье-Кирхгофа с учетом изменяемости ТФХ среды. Физический смысл урав-
	нений краевой задачи о переносе теплоты в потоке. Подобие явлений одной физической природы и установление условий, необходимых и достаточных для подобия физических явлений. Числа
	подобия. Теорема Кирпичева-Гухмана.
4	Схема Нуссельта и построение уравнений подобия для описания конвективного теп-
4	лообмена. Уравнения подобия для описания конвективного теплообмена при выну-
	жденном и при свободном движении/
	Описание процессов переноса тепла у обтекаемой поверхности с привлечением схемы Нуссельта и
	гипотезы Фурье. Связь числа Нуссельта с критериями Рейнольдса, Пекле, Прандтля, Рэлея. Урав-
	нения подобия для описания конвективного теплообмена при ламинарном, переходном и турбу-
	лентном режимах течения в канале и при обтекании пластины, цилиндра, пучков труб. Особенно-
	сти гидродинамики и теплообмена при свободной конвекции у горизонтальной трубы и верти-
	кальной плиты и уравнения подобия для их описания. Автомодельность теплообмена при больших
	числах Рэлея, термическая свободная конвекция над горизонтальными поверхностями и в щелях.
	Температурный фактор задач конвективного теплообмена.
5.	Теплообмен излучением твердых тел и газов.
	Механизм излучения электромагнитной энергии твердыми телами, законы излучения Планка,
	Стефана-Больцмана, Кирхгофа, Ламберта, Вина. Интегральная и спектральная степень черноты
	поверхности тел. Лучистый теплообмен между твердыми телами, экраны, экранно-вакуумная теп-
	ловая изоляция. Спектр излучения газов. Степень черноты газовой смеси. Теплообмен излучением
	между газовым телом и поверхностью твердого тела. Особенности излучения пламен.
6	Основные понятия и определения массообмена. Концентрационная массопроводность.
	Взаимосвязанная тепломассопроводность.
	Процессы массообмена в современной технике и технологии. Потенциал переноса вещества, плот-
	ность потока вещества. Гипотеза Фика, вывод уравнения массопроводности и краевая задача для него. Формирование поля концентраций во времени. Уравнение Фурье и условия однозначности
	его решения. Вид решений для тел классической формы. Формулы для расчета плотностей пото-
	ков тепла и вещества. Система уравнений акад. А.В.Лыкова и проблема ее решения.
7	Тепломассообмен при кипении жидкости и при конденсации паров. Тепломассообмен при
'	плавлении и затвердевании (проблема Стефана).
1	Механизм теплообмена при кипении жидкости в большом объеме и при ее движении в канале.

Формулы для описания теплоотдачи при различных режимах кипения, их критериальное представление. Кризисы кипения. Зависимости для описания теплообмена при движении кипящей жидкости в трубе. Механизм тепломассообмена при пленочной конденсации паров, формулы Нуссельта для теплоотдачи при конденсации на поверхности вертикальной плиты и горизонтальной трубы. Поправки П.Л.Капицы на волнообразование пленки конденсата. Влияние неконденсирующихся газов на процесс конденсации. Критериальные зависимости для описания теплоотдачи при конденсации. Постановка краевой задачи об определении теплового состояния жидкой и твердой фаз и кинематики движения границы их раздела. Аналитические и численные методы решения проблемы Стефана.

8 Конвективный массообмен. Тройная аналогия.

Диффузия и интегральные уравнения диффузионного пограничного слоя. Основные уравнения конвективного тепломассообмена и уравнения подобия для его описания. Подобие процессов тепломассообмена, соотношение Льюиса. Тепломассообмен газового потока с распыленными в нем каплями негорючей жидкости, методики проведения расчета

9 Специальные вопросы тепломассопередачи.

Аппараты для осуществления процессов тепломассопередачи. Конструкторский и поверочный расчеты теплообменников. Методы интенсификации процессов переноса тепла и вещества. Применение оребренных поверхностей и методы их расчета. Особенности переноса теплоты в разреженном газе и при больших скоростях его движения.

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебнометодическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.

ЗАКЛЮЧЕНИЕ

Научно-методического совета

по направлению подготовки (специальности)
по УГСН 13.00.00 Электро— и теплотехника
(шифр и наименование образовательной программы)
Настоящим подтверждаю, что представленный комплект аннотаций рабочих
программ учебных дисциплин по направлению подготовки (специальности)
13.03.01 Теплоэнергетика и теплотехника (бакалавриат)
(шифр и наименование образовательной программы)
по профилю (направленности) Тепловые электрические станции,
реализуемой по форме обучения очной,
(указать нужное: очной, очно-заочной (вечерней), заочной)
соответствует рабочим программам учебных дисциплин указанной выше
образовательной программы.
ооразовательной программы.
Председатель НМС Исмагилов Ф.Р.
подпись
«_26» <u>06</u> 2015_г
дата