МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра Электроники и биомедицинских технологий

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ПОСТРОЕНИЯ БИОТЕХНИЧЕСКИХ СИСТЕМ»

Уровень подготовки

высшее образование - бакалавриат

Направление подготовки (специальность)

12.03.04 Биотехнические системы и технологии

Направленность подготовки (профиль, специализация) Инженерное дело в медико-биологической практике

Квалификация (степень) выпускника **Бакалавр**

Форма обучения: очная

Уфа 2015

Исполнитель: профессор	Жернаков С.В.		
Должность	Фамилия И.О.		
Заведующий кафедрой ЭиБТ <u>:</u>	Жернаков С.В.		
Лолжность	Фамилия И О		

Место дисциплины в структуре образовательной программы

Дисциплина «Актуальные проблемы построения биотехнических систем» является дисциплиной по выбору.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки бакалавра 12.03.04 Биотехнические системы и технологии, утвержденного приказом Министерства образования и науки Российской Федерации от "12" марта 2015 г. № 216.

Целью освоения дисциплины формирование у студентов современных тенденций развития электроники, измерительной и вычислительной техники, информационных технологий в их профессиональной деятельности.

Задачи:

- Ознакомление с современными тенденциями развития электроники, измерительной и вычислительной техники, информационных технологий.
- Раскрытие современных научных представлений о формах и методах развития электроники, измерительной и вычислительной техники, информационных технологий.
 - Повышение мотивации к профессиональной деятельности.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

N₀	Формируемые компетенции	Код	Знать	Уметь	Владеть
	способностью	ОПК	• современны	• применять	• навыками
	учитывать	-7	е тенденции	современные	применять на
	современные		развития	интегрированн	практике
	тенденции		электроники,	ые аппаратно-	современные
	развития		измерительной	программные	тенденции
	электроники,		И	системы в	развития
1	измерительной и		вычислительно	области медико	электроники,
1	вычислительной		й техники,	-	измерительной
	техники,		информационн	биологических	И
	информационны		ых технологий.	исследований.	вычислительно
	х технологий в				й техники,
	своей				информационн
	профессиональн				ых технологий.
	ой деятельности				

Содержание и структура дисциплины (модуля)

№	Наименование и содержание разделов
1	Введение в дисциплину. Человеческий мозг. Модели нейронов. Обратная связь. Представление нейронных сетей на основе направленных графов Первая модель нейрона Мак-Каллока — Питса. Принцип действия. Этапы моделирования нейронных сетей. Сравнительный анализ задач, решаемых в нейросетевом базисе с классическими методами их решения, перспективы применения технологии нейронных сетей для построения современных систем поддержки принятия решений. Принцип работы нейронных сетей.
2	Архитектуры нейронных сетей. Искусственный интеллект и нейронные сети Представление знаний в нейронной сети. Как встраивать априорную информацию в структуру нейронной сети. Сетевые архитектуры. Гибридные знания на основе нейронечетких моделей их представления. Мозг, обучение и процесс мышления. Модель биологического нейрона. Передача сигнала нейроном. Функции активации нейронов. Стохастическая модель нейрона. Принцип работы нейронных сетей. Слои и связи нейронов в нейронных сетях. Свойства нейронных сетей. Достоинства нейронных сетей.
3	Самоорганизующиеся нейронные сети. Применение нейронных сетей. Принципы работы нейронных сетей. Правила обучения (дельта-правило; адалине; алгоритм обратного распространения ошибки). Структура нейронных сетей. Функции активации нейронов. Самоорганизующиеся нейронные сети (особенности). Рекуррентные нейронные сети. Решение практических задач с использованием нейронных сетей.
4	Экспертные системы Принципы разработки современных экспертных систем (ЭС). Поколения ЭС. Динамические ЭС. Модели знаний в базах знаний ЭС. Решатели задач. Стратегии вывода. Гибридизация знаний
5	Генетические алгоритмы. Генетические алгоритмы, задачи, решаемые ими. Гибридные модели систем искусственного интеллекта. Альтернативные алгоритмы эволюционного исчисления. Жадные алгоритмы, муравьиные колонии.
6	Нечеткая логика. Нечеткие когнитивные карты Нечеткая логика. Функции принадлежности. Термы. Вывод на нечетких правилах. Основные правила вывода. Принципы работы нечеткой когнитивной карты. Правила вывода нечеткой когнитивной карты. Решение практических задач с использованием нечеткой когнитивной карты

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебнометодическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.