МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Информационно-измерительной техники

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ²⁵

УЧЕБНОЙ ДИСЦИПЛИНЫ

«Моделирование процессов и систем»

Уровень подготовки высшее образование — бакалавриат направление подготовки 12.03.01 Приборостроение

Профиль Информационно-измерительная техника и технологии

Квалификация выпускника бакалавр

Форма обучения Очная, заочная

Уфа 2015

Исполнитель: доцент	С.В.Чигвинцев		
Заведующий кафедрой:	В.Х. Ясовеев		

²⁵ Аннотация рабочей программы дисциплины отражает краткое содержание рабочей программы дисциплины, являющейся неотъемлемой частью основной профессиональной образовательной программы.

Место дисциплины в структуре образовательной программы

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 12.03.01 «Приборостроение», утвержденного приказом Министерства образования и науки Российской Федерации от "03" сентября 2015 г. № 959.

Дисциплина *Моделирование процессов и систем* является <u>обязательной</u> дисциплиной *вариативной*, части, Б1.В.ОД

Целью изучения дисциплины является формирование необходимой базы знаний по компонентам компьютерных CALS-технологий, применяемых при инженерном анализе (моделировании) (CAE), являющимся основой для продуктивного изучения последующих дисциплин.

Задачи:

- ознакомить студентов со структурой информационной поддержки изделий в течение жизненного цикла;
- ознакомить с математическими основами моделирования на компонентном, схемотехническом и системотехническом уровнях проектирования;
- научить работе с программными и аппаратными средствами компьютерного моделирования.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

1	компетенции способность выявлять	OTIC A			
	естественно-научную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения физикоматематический аппарат	ОПК-3	- основы теории электромагнитног о поля, электрических и магнитных цепей; - основы математического моделирования	- применять методы математическо го описания физических явлений и процессов, определяющих принципы работы различных технических устройств	- способностью на основе системного подхода разрабатывать технические условия и технические описания принципов действия и устройства проектируемых комплексов, их систем и элементов с обоснованием принятых технических решений
3	готовность к математическому моделированию процессов и объектов приборостроения и их исследованию на базе стандартных пакетов автоматизированного проектирования и самостоятельно разработанных программных продуктов способность к анализу, расчету, проектированию и конструированию в соответствии с техническим заданием типовых систем,	ПК-2	- принципы построения программ - основы моделирования различных объектов и процессов - принципы моделирования объектов и процессов	- использовать возможности программных пакетов моделирования для задач приборостроен ия - использовать в своей деятельности различные прикладные	- навыками применения стандартных средств компьютерного моделирования и автоматизирования - навыками решения типичных задач моделирования с помощью

приборов, деталей и узлов		компьютерные	популярных
на схемотехническом и		средства, в том	специальных
элементном уровнях		числе	компьютерных
		программы	программ
		для	
		моделировани	
		я электронных	
		схем и полей	

Содержание разделов дисциплины

№ Наименование и содержание разделов

1 Общие принципы и методы моделирования

Содержание и структура курса. Роль моделирования в проектировании и исследовании технических процессов и систем. Место САЕ-технологий в информационной поддержке изделий в течение жизненного цикла. Классификация методов моделирования. Элементы теории подобия и моделирования. Математическое моделирование. Требования к математическим моделям. Иерархия уровней и итеративная схема моделирования при проектировании технических объектов.

2 Моделирование на компонентном уровне

Общая модель Максвелла. Уравнения электромагнитной связи, непрерывности, свойств среды, граничные условия, связь потенциалов с силовыми параметрами. Электростатическая, магнитостатическая, электрокинетическая магнитодинамические модели и для компонентов и устройств информационноизмерительной элементов техники. Метод конечных при решении дифференциальных уравнений в частных производных. Дискретизация области моделирования, описание физических свойств, задание граничных условий. Виды конечных элементов и аппроксимирующих их функций. Пакеты прикладных программ для моделирования по методу конечных элементов. Система двумерного моделирования ELCUT.

3 Моделирование на схемотехническом уровне

Дискретизация пространства, переход распределенных параметров OT сосредоточенным. Компонентные и топологические уравнения. Направленные (ориентированные) графы, основные элементы графов, матрицы главных сечений и контуров, соединений и их взаимосвязь. Нормальный граф, порядок включения ветвей в нормальные подграфы дерева и дополнение дерева (ветви связи). Моделирование динамических процессов по методу переменных состояния. Статистические испытания по методу Монте-Карло. Генерирование псевдослучайных определение статистических параметров распределения, гистограммы, аппроксимация эмпирического закона распределения теоретическому. Анализ чувствительности. Моделирование надежности. Оптимизация объектов моделирования основные понятия и определения. Критерии оптимальности. Методы поиска экстремума.

4 Моделирование на системотехническом уровне

Математические схемы моделирования систем. Непрерывно-детерминированные модели (D-схемы). Дискретно-детерминированные модели (F-схемы). Дискретно-стохастические модели (P-хемы). Дискретно -стохастические модели (Q-схемы). Сетевые модели (N-схемы). Комбинированные модели (A-схемы).

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.