МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Информационно-измерительной техники

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ³¹

УЧЕБНОЙ ДИСЦИПЛИНЫ

«Микроконтроллеры в информационно-измерительной технике»

Уровень подготовки высшее образование — бакалавриат направление подготовки 12.03.01 Приборостроение

Профиль Информационно-измерительная техника и технологии

Квалификация выпускника бакалавр

Форма обучения Очная, заочная

Уфа 2015

Исполнитель: <u>к.т.н.,доцент</u> Р.Ю.Мукаев Заведующий кафедрой: <u>В.Х. Ясовеев</u>

³¹ Аннотация рабочей программы дисциплины отражает краткое содержание рабочей программы дисциплины, являющейся неотъемлемой частью основной профессиональной образовательной программы.

Место дисциплины в структуре образовательной программы

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 12.03.01 «Приборостроение», утвержденного приказом Министерства образования и науки Российской Федерации от "03" сентября 2015 г. № 959.

Дисциплина «Микроконтроллеры в информационно-измерительной технике» является обязательной дисциплиной вариативной части.

Целью освоения дисциплины формирование у студентов профессиональных знаний и навыков в области применения микроконтроллеров (МК) для построения приборов информационно-измерительной техники (ИИТ).

- Задачи: Ознакомить обучающихся с архитектурами МК, используемых в современной измерительной аппаратуре;
- сформировать знания для использования современных МК для построения широкого класса приборов ИИТ;
- сформировать знания о основных интерфейсах МК и их использования при построении аппаратуры;
- познакомить обучающихся с основами программирования МК, применяемых в ИИТ.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине:

№	Формируемые компетенции	Код	Знать	Уметь	Владеть
1	- способность к наладке, настройке, юстировке и опытной проверке приборов и систем	ПК- 4	-Основные технические характеристики МК -Технические особенности современных МК	-Выбрать тип МК для решения конкретных задач -Использовать внешние устройства МК для приборов и систем	
2	способность к анализу, расчету, проектированию и конструированию в соответствии с техническим заданием типовых систем, приборов, деталей и узлов на схемотехническом и элементном уровнях	ПК-5	-Основные схемотехнические и программные особенности современных МК -Основные команды МК	-Использовать интегрированные программы типа AVR Studio для программирования МК -Использовать типовые проектные решения на МК	
3	- способность к разработке и отладке программного обеспечения различного уровня для измерительных устройств и ИИУС	ПКП-2	Основы программирования МК	Использовать программы для информационно-измерительных и управляющих систем	

Содержание разделов дисциплины

No	Наименование и содержание разделов				
1	Аппаратная часть МК				
	Архитектуры микроконтроллеров (МК). Структуры МК МісгоРС, AVR, ARM. Основные				
	технические параметры МК. Полупроводниковая память МК(Flash, EEPROM,SRAM				
	DRAM). Память программ и память данных. Организация банков памяти МК. Счётчик				
	команд и выполнение программы. Конвейер команд. Тактирование МК. Виды тактовых				
	генераторов МК. Режим пониженного энергопотребления МК. Реализация прерываний.				
	Таблица векторов прерываний, резервирование ячеек памяти для векторов прерываний.				
	Внешние и внутренние прерывания. Организация портов ввода/вывода, регистры портов,				
	конфигурирование портов. Таймеры. Аналоговый компаратор. АЦП, ЦАП и широтно-				
	импульсные модуляторы. Примеры применения команд МК в типовых алгоритмах ввода и				
	вывода данных в устройствах ИИТ.				
2	Система команд МК				
	Форматы данных. Способы адресации. Команды логических операций. Команды				
	арифметических операций и сдвига. Команды операций с битами. Команды пересылки				
	данных. Команды передачи управления, команды вызова подпрограмм и задания режимов				
	работы МК.				
3	Интерфейсы МК				
	Классификация интерфейсов МК. Интерфейс по стандарту IEEE1284. Интерфейсы RS-				
	232,UART, RS-485, ISA, PCI, USB, SPI, I2C. Основные характеристики, протоколы обмена,				
	форматы передаваемых данных.				
4	Программирование МК				
	Способы защиты записанного в МК кода. Конфигурационные биты (FUSE-биты) и их				
	назначение. Запись кода в МК по параллельному и последовательному каналу.				
	Самопрограммирование МК. Примеры программ ввода и вывода данных. Вывод данных на				
	индикаторы и внешние устройствами. Примеры программ для измерения аналоговых				
	величин и временных интервалов.				

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.