МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Электроники и биомедицинских технологий

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ»

Направление подготовки

11.03.02 Инфокоммуникационные технологии и системы связи

(шифр и наименование направления подготовки)

Профиль

Многоканальные телекоммуникационные системы

(наименование направленности/ профиля)

Квалификация выпускника <u>Бакалавр</u>

(наименование квалификации)

Форма обучения <u>очная</u>

УФА 2015

Исполнитель: к.т.н., доцент Лобанов Ю.В.

Должность

Фамилия И.О.

Заведующий кафедрой ЭиБТ: С.В. Жернаков

Фамилия И.О.

Место дисциплины в структуре образовательной программы

Дисциплина «Физические основы электроники» относится к дисциплинам вариативной части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи (уровень бакалавриат), утвержденного приказом Министерства образования и науки Российской Федерации от "6" марта 2015 г. № 174.

Целью освоения дисциплины является: формирование систематизированных знаний об основных физических эффектах и явлениях, определяющих принцип действия, параметры и характеристики электронных приборов

Задачи:

- Сформировать знания об основных физических процессах явлениях, протекающих в полупроводниковых, газоразрядных и квантовых приборах.
- Изучить взаимосвязи между физическими закономерностями явлений в твердых телах с эксплуатационными характеристиками электронных приборов
- Сформировать навыки экспериментальных исследований характеристик и параметров полупроводниковых приборов.
- Сформировать представление у студентов о современных методах исследования электронных структур.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

№	Формируемые компетенции	Код	Знать	Уметь	Владеть
	способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением инфокоммуникационных технологий и с учетом основных требований информационной безопасности	ОПК-2	- физические явления и эффекты, определяющие принцип действия основных полупроводниковых, электровакуумных и оптоэлектронных приборов; - методы анализа электромагнитных процессов, расчета параметров и выбора рабочих режимов электронных полупроводниковых приборов - физический смысл основных параметров и основные характеристики электрических контактов различного вида в	- составлять электрические модели и эквивалентные схемы базовых элементов твердотельной электроники - пользоваться главными характеристика ми основных видов полупроводнико вых приборов и типовых функциональны х узлов;	навыками составления и оформления отчётов по результатам эксперимент альных исследовани й полупровод никовых структур.

	способность	ПК-17	полупроводниковой электронике;	- выбирать	-навыками
2	применять современные теоретические и экспериментальны е методы исследования с целью создания новых перспективных средств электросвязи и информатики		физической реализацией полупроводниковых структур и их моделями, электрическими характеристиками и параметрами - основные параметры и основные характеристики электрических контактов различного вида в полупроводниковой электронике;	рабочие режимы электронных приборов по результатам анализа их характеристик и заданным условиям; - объяснять связь физических параметров со статическими характеристика ми и параметрами структур	проводения эксперимент ов с использован ием современно й измерительн ой аппаратурой

Содержание разделов дисциплины

$N_{\underline{0}}$	Наименование и содержание раздела					
1.	Основы физики полупроводников.					
	Классификация твердых тел, Кристаллическая решетка, Генерация и рекомбинация					
	носителей заряда Собственные и примесные полупроводники. Диффузионное и					
	дрейфовое движение носителей заряда. Электропроводность полупроводников.					
2.	Элементы зонной теории твердого тела					
	Энергетические уровни и энергетические зоны. Распределение Ферми – Дирака. Уровень					
	Ферми. Температурные зависимости концентрации носителей и уровня Ферми.					
3.	Контактные явления в твердых телах					
	Физические процессы при контакте полупроводник – полупроводник. Математическая					
	модель идеализированного электронно-дырочного перехода. Инерционные свойства					
	перехода. Барьерная и диффузионная емкости. Туннельный эффект, ударная ионизация.					
	Пробой перехода. Гетеропереходы.					
4.	Физические процессы в полупроводниковой структуре с двумя взаимодействующими					
	переходами					
	Зонные диаграммы. Распределение носителей заряда и токов в структуре с двумя					
	переходами. Основные соотношения.					
5.	Фотоэлектрические явления в полупроводниках и переходах					
	Фотопроводимость. Механизмы поглощения полупроводником энергии электромагнитного					
	излучения. Фотогальванический эффект.					
6.	7.7					
0.	Термоэлектрические и гальваномагнитные явления в полупроводниках					
	Эффект Пельтье, Эффект Зеебека. Гальваномагнитный эффект Холла. Эффект Гаусса					

7.	Электрический разряд в газе. Понятие о плазме	
	Самостоятельные и несамостоятельные, стационарные и нестационарные разряды.	
	Понятие о плазме, степень ионизации, дебаевский радиус экранирования.	
8.	Особенности квантово-размерных структур Квантовые переходы: спонтанные, вынужденные и релаксационные. Ширина спектральной	

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.

ЗАКЛЮЧЕНИЕ

Научно-методического совета

по УГСН 11.00.00 Электроника, радиотехника и системы связи (шифр и наименование образовательной программы)

Настоящим подтверждаю, что представленный комплект аннотаций рабочих программ учебных дисциплин по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи (шифр и наименование образовательной программы)

по профилю Многоканальные телекоммуникационные системы,

реализуемой по форме обучения очной, (указать нужное: очной, очно-заочной (вечерней), заочной)

соответствует рабочим программам учебных дисциплин указанной выше образовательной программы.

Председатель НМС

А.Х. Султанов
«<u>1</u> » <u>09</u> 201<u>5</u> г.