МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра ВВТиС

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

УЧЕБНОЙ ДИСЦИПЛИНЫ

«СУПЕР ЭВМ»

Уровень подготовки: высшее образование – бакалавриат

Направление подготовки бакалавров 09.03.01 Информатика и вычислительная техника

(код и наименование направления подготовки)

Направленность подготовки <u>ЭВМ, системы и сети</u>

(наименование программы подготовки)

Квалификация (степень) выпускника <u>бакалавр</u>

Форма обучения очная

Уфа 2016

Исполнители:	
старший преподаватель	А.В. Юлдашев
старший преподаватель	А.М. Ямилева
Заведующий кафедрой ВВТиС	Р.К. Газизов

Место дисциплины в структуре образовательной программы

Дисциплина «Супер ЭВМ» является дисциплиной по выбору студента вариативной части ОПОП.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки бакалавров 09.03.01 «Информатика и вычислительная техника», утвержденного приказом Министерства образования и науки Российской Федерации от "12" января 2016 г. № 5.

Целью освоения дисциплины является освоение инструментов разработки и отладки программного обеспечения суперкомпьютерных и кластерных вычислительных систем.

Задачи:

- сформировать представления о суперкомпьютерных системах и прикладных задачах, требующих проведения высокопроизводительных вычислений;
 - ознакомить с основами параллельной обработки и параллельного программирования;
- привить навыки работы с системным программным обеспечением параллельных вычислительных систем;
- научить разрабатывать простейшие параллельные приложения для многопроцессорных вычислительных систем;
 - научить оценивать эффективность распараллеливания.

Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций.

Планируемые результаты обучения по дисциплине

№	Формируемые компетенции	Код	Знать	Уметь	Владеть
1	Способность инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем	ОПК-1	основные средства разработки и отладки параллельного программного обеспечения	использовать основные средства распараллеливан ия программ для кластерных и суперкомпьютер ных систем	навыком работы с системным программным обеспечением суперкомпьютер ных систем
2	Использует основные законы естественнонаучных дисциплин в профессиональной деятельности, применяет методы математического анализа и моделирования, теоретического и экспериментального исследования	ПКП-5	компоненты программных комплексов, используемых в параллельных вычислениях, принципы распараллеливания программ с учетом архитектур Супер-ЭВМ	разрабатывать компоненты программных комплексов и баз данных, используя современные технологии программирован ия применительно к архитектурам супер-ЭВМ	разработки компонентов программных комплексов и баз данных, с использованием современных технологий программирован ия применительно к архитектурам супер-ЭВМ

Содержание разделов дисциплины

No	Наименование и содержание раздела
----	-----------------------------------

	Базовые принципы параллельной обработки данных:					
1	- Понятие супер ЭВМ (суперкомпьютера)					
1	- История развития параллелизма в вычислительных системах					
	- Многозадачные, параллельные и распределенные вычисления и системы					
	Архитектурные принципы параллелизма:					
	- Классификация вычислительных систем					
	- Конвейерные и векторные системы					
2	- Иерархия памяти					
2	- Многопроцессорные системы с общей памятью					
	- Многопроцессорные системы с распределенной памятью					
	- Гибридные многопроцессорные системы					
	- Топологии коммуникационной сети					
	Моделирование и анализ параллельных алгоритмов					
	- Введение в параллельные алгоритмы.					
3	- Показатели эффективности параллельных алгоритмов.					
	- Влияние параметров вычислительной системы на эффективность					
	параллельных алгоритмов.					
	Модели и средства параллельного программирования					
4	- Парадигмы параллельного программирования					
	- Классификация средств параллельного программирования					
	Интерфейс OpenMP					
5	- Структура OpenMP					
	- Директивы распараллеливания и разделения заданий					
	- Директивы синхронизации потоков и работы с потоками					
	Разработка параллельного программного обеспечения для многопроцессорных систем					
	средствами МРІ					
6	- Базовые функции МРІ					
	- Функции парного взаимодействия.					
	- Функции коллективного взаимодействия.					

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.