МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра физики

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

УЧЕБНОЙ ДИСЦИПЛИНЫ

«ФИЗИКА 1»

Уровень подготовки

бакалавриат

(высшее образование - бакалавриат; высшее образование - специалитет, магистратура)

Направление подготовки (специальность)

09.03.01. Информатика и вычислительная техника

(код и наименование направления подготовки, специальности)

Направленность подготовки (профиль, специализация) <u>Автоматизированные системы обработки информации и управления</u>

(наименование профиля подготовки, специализации)

Ква	лификация (степень) выпускника
	бакалавр
	Форма обучения
	очная

Уфа 2016

Место дисциплины в структуре образовательной программы

В Рабочая программа составлена соответствии c требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01Информатика и вычислительная техника, утвержденного приказом Министерства образования и науки Российской Федерации "12" января 2016 г. № 5 «Об утверждении федерального государственного образовательного стандарта высшего образования 09.03.01Информатика направлению подготовки вычислительная техника и (уровень бакалавриата)». Является неотъемлемой частью ОПОП.

Согласно ФГОС ВО дисциплина «Основы информационной безопасности» является базовой дисциплиной основной профессиональной образовательной программы (ОПОП) по направлению подготовки бакалавра 09.03.01 Информатика и вычислительная техника.

Целью освоения дисциплины является: освоение студентами основных физических явлений, законов и возможностей их применения для решения научно-технических задач в теоретических и прикладных аспектах, возникающих в последующей профессиональной деятельности выпускников технического университета.

Задачами курса физики являются:

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач;
- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
 - формирование у студентов основ естественнонаучной картины мира;
 - ознакомление студентов с историей и логикой развития физики и основных её открытий. Входные компетенции:

$N_{\underline{0}}$	Компетенция	Код	Уровень освоения,	Название дисциплины
			определяемый	(модуля), практики,
			этапом	научных исследований,
			формирования	сформировавших
			компетенции*	данную компетенцию
1	Использует основные законы	ПКП-5	пороговый	Линейная алгебра и
	естественнонаучных дисцип-			аналитическая
	лин в профессиональной дея-			геометрия
	тельности, применяет методы			
	математического анализа и			
	моделирования, теоретиче-			
	ского и экспериментального			
	исследования(этап 1).			

Исходящие компетенции:

$N_{\underline{0}}$	Компетенция	Код	Уровень	Название
			освоения,	дисциплины
			определяемый	(модуля), для
			этапом	которой данная
			формирования	компетенция
			компетенции	является входной
1.	Использует основные законы	ПКП-5	базовый	Электротехника.
	общей физики, применяет методы			Физика 2
	теоретического и эксперименталь-			
	ного исследования (этап 5).			

	аспектам	
	дисциплины	

2. Перечень результатов обучения
Процесс изучения дисциплины направлен на формирование элементов следующих компетенций:

3. Содержание и структура дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единицы (144 часа).

Трудоемкость дисциплины по видам работ

Вид работы	Трудоемкость, час.
_	3 семестр
Лекции (Л)	22
Практические занятия (ПЗ)	16
Лабораторные работы (ЛР)	24
KCP	4
Курсовая проект работа (КР)	
Расчетно - графическая работа (РГР)	
Самостоятельная работа (проработка и повторение	69
лекционного материала и материала учебников и	
учебных пособий, подготовка к лабораторным и	
практическим занятиям, коллоквиумам, рубежному	
контролю и т.д.)	
Подготовка и сдача экзамена	9
Подготовка и сдача зачета	
Вид итогового контроля (зачет, экзамен)	Зачет с оценкой

Содержание разделов и формы текущего контроля

Виды интерактивных	образовательных	технологий*							Классическое	практическое	занятие, лекция-	визуализация,	компьютерное и	бланочное	тестирование.	Представление	отчётов, защита	лабораторных работ.	Классическое	практическое	занятие, лекция-	визуализация,	компьютерное и	оланочное	тестирование.	Представление	отчётов, защита	лаоораторных раоот.
Литература,	рекомендуемая	студентам*	1. Детлаф А.А., Яворский Б.М. Курс	издательский центр	«Academia», 2014. – 720c	2. Трофимова Т.И.	Курс физики. – М.: Издательский пенти	«Academia», 2014. – 560c.	1. Глава 1. §§ 1.1-1.4	C. 8-18.	Глава 4. § 4.1 С. 47-	50.	2. Глава 1. §§ 1-4 С.	7-13.					1. Глава 2. §§ 2.1-2.7	C. 19-31.	Глава 5. §§ 5.1, 5.3	C. 59-61.	2. Глава 2. §§ 5-10 С.	14-22.				
	Всего								7,5										6									
acob	CPC								4										S									
Количество часов	a	KCP							6,0										0,5									
Коли	иторная работа	m JP							1																			
	(иторна	ШЗ							-										-									
	Ауди	Л							1										1.5									
Наименование и содержание раздела			Механика.						Кинематика материальной точки и	поступательное движение твердого тела.	Механическое движение. Траектория, путь,	перемещение. Скорость и ускорение при	прямолинейном и криволинейном движении.	Угловая скорость и угловое ускорение.					Динамика материальной точки и	поступательного движения твердого тела.	Закон инерции. ИСО. Второй и третий закон	Ньютона. Масса. Сила, импульс. Закон	сохранения и изменения силы. Центр масс и	закон его движения,				
¥			1						1.1										1.2									

1.3	Работа и энергия. Механическая работа, кинетическая энергия. Консервативные и диссипативные силы. Потенциальная энергия. Закон сохранения и изменения механической энергии. Удары тел и закон сохранения.	Т	_	_	1	E	9	1. Глава 3. §§ 3.1-3.4 С. 32-43. Глава 5. §§ 5.2, 5.4 С. 61-65, 67-73. 2. Глава 3. §§ 11-15 С. 23-33.	Классическое практическое занятие, лекция-визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
4.1	Закон сохранения момента импульса и динамика вращательного движения. Момент инерции тела. Теорема Штейнера. Момент силы и момент импульса. Закон сохранения и изменения момента импульса. Уравнение динамики вращательного движения тела. Энергия вращающегося и катящегося тела.	1.5	2	2	1	4	10.5	1. Глава 4. §§ 4.2- 4.3, 5.3 С. 50-58, 65- 67. 2. Глава 4. §§ 16-19 С. 34-39.	Классическое практическое занятие, лекция-визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
1.5	Основы специальной теории относительности. Механический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности. Преобразование Лоренца. Релятивистская динамика. Закон взаимосвязи массы и энергии.	0.5	-	1	1	2	3.5	2. Глава 6. §§ 28-30 С. 57-62.	Классическое практическое занятие, лекция-визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.

Молекулярная физика и термодинамика 0.5 1 - Статистический и термодинамический методы 0.5 1 1 исследования макросистем. Модель идеального 1 1 - газа. Уравнение состояния и основные 0.5 1 1 - положения молекулярно-кинетической теории 0.5 0.5 1 - МКТ). Распределение Максвелла по скоростям и 1 - - МКТ). Распределение Больцмана и 0.5 0.5 1 - Распределение Больцмана и 6арометрическая формула. 6арометрическая формула. 1 - Краднее число столкновений, средняя длина свободного пробета и эффективный диаметр 0.5 0.5 1 - Креднее число столкновений, средняя длина свободного пробета и эффективный диаметр 6 0.5 0.5 1 - Среднее число столкновений, средняя длина свободы молекул давкон равнораспределения 6 0.5 0.5 1 - Внутреннее трение и их законы. 1 - 0.5 0.5 1 -		3 5.5 1. Глава 8. §§ 8.1-8.3 Классическое С. 105-109. практическое занятие, 2. Глава 8. §§ 41 С. 81. Представление отчётов, защита лабораторных работ.	3 5 1. Глава 10. §§ 10.1- Практическое анятие, практическое занятие, практическое занятие, практическое занятие, пекция-визуализация, с. 81-90. С. 81-90. Представление отчётов, защита лабораторных работ.	5 7 1. Глава 10. §§ 10.6- Классическое 10.9 С. 136-143. практическое занятие, 2. Глава 8. § 48 С. компьютерное и 94-96. бланочное тестирование. Представление отчётов, защита
тем термодинамика рдинамический методы тем. Модель идеального ия и основное ного газа. Смысл аконы. Основные о-кинетической теории жения молекул сспериментальная те Больцмана и ла. рмодинамических ве Больцмана и ла. рмодинамических зений, средняя длина ффективный диаметр а. Число степеней и равнораспределения кения по степеням кения по степеням кения по степеням кость, диффузия, законы.		1	1	1
и и термодинамика Одинамический методы Тем. Модель идеального им и основное ного газа. Смысл аконы. Основные О-кинетической теории спериментальная е Болыцмана и ла. рмодинамических вений, средняя длина ффективный диаметр а. Число степеней и равнораспределения сения по степеням сения по степеням сения по степеням сость, диффузия, законы.		1	1	-
и и термодинамика рдинамический методы тем. Модель идеального ния и основное ного газа. Смысл аконы. Основные о-кинетической теории спериментальная те Больцмана и ла. рмодинамических ах. зений, средняя длина ффективный диаметр а. Число степеней и равнораспределения сения по степеням гость, диффузия, законы.		1	0.5	0.5
Молекулярная физика и термодинамика Статистический и термодинамический методы исследования макросистем. Модель идеального газа. Уравнение состояния и основное уравнение МКТ идеального газа. Смысл температуры. Газовые законы. Основные положения молекулярно-кинетической теории (МКТ). МКТ идеального газа. Распределение Максвелла по скоростям и энергиям теплового движения молекул идеального газа и его экспериментальная проверка. Распределение Больцмана и барометрическая формула. Явления переноса в термодинамических неравновесных системах. Среднее число столкновений, средняя длина свободного пробега и эффективный диаметр молекул идеального газа. Число степенёй свободы молекул. Закон равнораспределения энергии теплового движения по степеням свободы. Теплопроводность, диффузия, внутреннее трение и их законы.		0.5	0.5	0.5
$\begin{bmatrix} 2 \\ 2.1 \end{bmatrix}$	Молекулярная физика и термодинамика			

лабораторных работ.	Классическое практическое занятие, лекция-визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.		Классическое практическое занятие, лекция-визуализация, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.	Классическое практическое занятие,
	1. Глава 9. §§ 9.1-9.6, 11.1-11.6, 12.1-12.3 С. 113-125, 150-165, 169-177. 2. Глава 9. §§ 51-62, 75 С. 101-122, 141, 142.		1. Глава 13 §§ 13.1- 13.4 С. 183-194. Глава 14 §§ 14.1, 14.2 С. 195-202. 2. Глава 11 §§ 77-85 С. 146-159.	1. Глава 15 §§ 15.1- 15.5 С. 204-218.
	11.5		=	8.5
	ν		9	4
	5,0		5,0	0,5
	2			1
	_		-	
	w		2.5	7
	Основы термодинамики Внутренняя энергия макросистемы. Работа газа и количество теплоты. Первый закон термодинамики. Адиабатный процесс. Теплоемкость. Политропный процесс идеального газа. Обратимые и необратимые процессы. Второй закон термодинамики. Тепловые и холодильные машины. Идеальная тепловая машина и ее КПД. Энтропия. Теорема Нернста. Реальные газы и уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса. Уравнение Клапейрона-Клаузиуса. Фазовые переходы.	Электричество и магнетизм	Электростатика. Электростатическое поле в вакууме. Заряд и его свойства. Закон сохранения электрического заряда. Закон Кулона. Напряженность электростатического поля. Принцип суперпозиции. Поток вектора напряженности. Теорема Гаусса и ее применение для расчета электрических полей. Работа по перемещению заряда в электростатическом поле. Циркуляция вектора напряженности. Потенциал электростатического поля и его связь с напряженностью. Эквипотенциальные поверхности.	Диэлектрики в электрическом поле. Типы диэлектриков. Поляризация диэлектриков.
	2.4	3	3.1	3.2

									тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
3.6	Магнитное поле в вакууме. Магнитная индукция и напряженность магнитного поля. Закон Ампера. Сила Лоренца. Магнитное поле движущегося заряда. Принцип суперпозиции. Закон Био-Савара-Лапласа и его применение к расчету магнитных полей. Теорема о циркуляции вектора магнитный поток. Теорема (закон полного тока). Магнитный поток. Теорема Гаусса для магнитного поля. Движение заряженных частиц в электрических и магнитных полях. Эффект Холла.	2.5	1	8	1	5	11.5	1. Глава 21 § 21.3 С. 272-281. Глава 22 §§ 22.1- 22.3, 22.4 С. 282-292. Глава 23 §§ 23.1- 23.3 С. 298-304. 2. Глава 14 §§ 109- 120 С. 202-219.	Классическое практическое занятие, лекция-визуализация, компьотерное и бланочное тестирование, компьотерное и бланочное тестирование. Представление отчётов, защита лабораторных работ.
3.7	Магнитное поле в веществе. Магнитные моменты электронов и атомов. Намагниченность и его связь с плотностью молекулярных токов. Напряженность магнитного поля в веществе. Закон полного тока. Классификация магнетиков. Диамагнетики, парамагнетики и ферромагнетики. Условия на границе раздела двух магнетиков.	1	1	-	-	\$	∞	1. Глава 24 §§ 24.3- 24.6 С. 314-329. 2. Глава 16 §§ 131- 136 С. 234-245.	Классическое практическое занятие, лекция-визуализация, компьютерное и бланочное тестирование, компьютерное и бланочное тестирование. Представление отчётов, защита лабораторных работ. Представление рефератов.
3.8	Электромагнитная индукция.	Т	1	3	ı	5	10	1. Глава 25 §§ 25.1-	Классическое

	Основной закон электромагнитной индукции.							25.4 C. 330-344.	практическое занятие,
	Правило Ленца. Индуктивность. Явление							2. Глава 15 §§ 122-	лекция-визуализация,
	самоиндукции. Токи при размыкании и							130 C. 221-233.	компьютерное и
	замыкании цепи. Явление взаимной индукции.								бланочное
	Энергия магнитного поля.								тестирование,
									компьютерное и
									бланочное
									тестирование.
									Представление
									отчётов, защита
									лабораторных работ.
Итого:	1.03	22	16	24	4	69	135		

Занятия, проводимые в интерактивной форме, составляют 50% от общего количества аудиторных часов по дисциплине физика.

Учебно-методическое и информационное обеспечение дисциплины (модуля)

Основная литература

- 1. Трофимова Т.И. Курс физики: учебное пособие для инженерно-технических специальностей высших учебных заведений М: Высшая школа, 2004.
 - 2. Трофимова Т.И. Курс физики: учебное пособие для вузов М.: Academia, 2005.
- 3. Савельев И.В. Курс общей физики [Электронный ресурс]: учебное пособие для студентов вузов, обучающихся по техническим направлениям и специальностям, в 5-ти т. СПб: Лань, 2011.
- 4. Волькенштейн В.С. Сборник задач по общему курсу физики: для студентов технических вузов СПб: Книжный мир, 2008.
- 5. Савельев И.В. Сборник вопросов и задач по общей физике [Электронный ресурс]: учебное пособие СПб: Лань, 2007.
- 6. Фриш С.Э., Тиморева А.В. Курс общей физики [Электронный ресурс]: учебник для студентов технических вузов и университетов, в 3-х т. СПб: Лань, 2008 и 2009.
- 7. Зисман Г.А., Тодес О.М. Курс общей физики [Электронный ресурс]: учебное пособие для студентов высших учебных заведений, обучающихся по техническим, естественнонаучным и педагогическим направлениям и специальностям, в 3-х т. СПб: Лань, 2007.
- 8. Бабаев В.С., Легуша Ф.Ф. Корректирующий курс физики [Электронный ресурс] СПб: Лань, 2011.
- 9. Детлаф А.А., Яворский Б.М. Курс физики. М.: Издательский центр «Academia», 2014. 720с.
- 10. Трофимова Т.И. Курс физики. М.: Издательский центр «Academia», 2014. 560с.

Дополнительная литература

- 1. Трофимова Т.И., Павлова Т.И. Сборник задач по курсу физики с решениями: учебное пособие для студентов вузов М.: Высшая школа, 2003.
- 2. Гринкруг М.С., Вакулюк А.А. Лабораторный практикум по физике [Электронный ресурс] СПб: Лань, 2012.
- 3. Сагитова Э.В., Строкина В.Р., Хайретдинова А.К. Сборник тестовых заданий по разделам «Элементы квантовой теории», «Основы атомной и ядерной физики» Уфа: УГАТУ, 2003.
- 4. Александров И.В. и др. Современная физика [Электронный ресурс]: учебное пособие для студентов всех форм обучения, обучающихся по техническим и технологическим направлениям и специальностям Уфа: УГАТУ, 2008.
- 5. Сборник задач по физике [Электронный ресурс] / под ред. Р.И. Грабовского СПб: Лань, 2012.
- 6. Жуков К.Г. Модельное проектирование встраиваемых систем в LabVIEW [Электронный ресурс]: пособие для студентов соответствующих специальностей технических университетов и вузов, дипломников и аспирантов, слушателей курсов повышения квалификации Москва: ДМК ПРЕСС, 2011.
- 7. Лазарев В.В. Изучение сложения гармонических колебаний с применением программной среды LabVIEW и АЦП NI USB-6009 [Электронный ресурс]: лабораторный практикум по дисциплине «Современная физика» Уфа: УГАТУ, 2008.
- 8. Михайлов Г.П. Моделирование молекулярных структур [Электронный ресурс]: лабораторный практикум по дисциплине «Современная физика» Уфа: УГАТУ, 2008.

6.3. Интернет-ресурсы (электронные учебно-методические издания, лицензионное программное обеспечение)

- 1. Открытая физика 1.0 (1 и 2 части). (Открытая Физика версия 2,6 часть 1 рег. Номер JE647788)
- 2. Открытая физика 2.0 (1 часть). (Открытая Физика версия 2,6 часть 2 рег. Номер JE668265)
- 3. Виртуальная лаборатория физики 2.0. (Физика. Практикум 0320600628 от 12.05.2006)
 - 4. Учебно-методический комплекс «Физика».

(Часть 1. Механика. Молекулярная физика и термодинамика

(№ гос. регистрации 0320400091 от 05.02.2004),

Часть 2. Электростатика. Постоянный ток. Электромагнетизм

(№ гос. регистрации 0320400546 от 28.09.2004),

Часть 3. Оптика. Квантовая и атомная физика. Элементы физики атомного ядра и элементарных частиц

(№ гос. регистрации 0320400963 от 28.09.2004)

5. Программы для моделирования молекулярных систем: Chem Office (Serial Number 201- 333874-8236), Hyper Chem 8 (Serial # 12-800-1501700171). Это в другой раздел -

Материально-техническое обеспечение дисциплины

На сайте библиотеки http://library.ugatu.ac.ru/ в разделе «Информационные ресурсы», подраздел «Доступ к БД» размещены ссылки на интернет-ресурсы.

6.4 Методические указания к практическим занятиям

- 1. Шатохин С.А., Сагитова Э.В. Основы молекулярной физики и термодинамики. Методические указания к практическим занятиям по курсу общей физики, 2005.
- 2. Трофимова Е.В. Механика. Методические указания к практическим занятиям по курсу общей физики, 2003.
- 3. Сагитова Э.В., Хайретдинова А.К., Строкина В.Р., Трофимова Е.В. Тестовые задания по разделу «Физические основы механики», «Молекулярная физика и термодинамика». Практикум по дисциплине «Физика», 2007.
- 4. Чембарисова Р.Г. Неинерциальные системы отсчета. Методические указания к практическим занятиям по дисциплине «Физика», 2007.
- 5. Строкина В.Р., Шатохин С.А. Электричество и магнетизм. Методические указания к практическим занятиям по курсу общей физики, 2003.
- 6. Сагитова Э.В., Строкина В.Р., Хайретдинова А.К. Тестовые задания по разделу «Электричество и магнетизм» Практикум, 2006.
- 7. Строкина В.Р. Физика. Электричество и магнетизм: Практикум. 2009. http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_pract.rar

Методические указания к лабораторным занятиям

Здесь нужна ссылка по форме, например,

Раздел 1. 7. Строкина В.Р. Физика. Электричество и магнетизм: Практикум. 2009. [Электронный ресурс] – Режим доступа:

http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_pract.rar

Должно остаться всего 3 пункта

- № 1. Определение моментов инерции твердых тел методом трифилярного подвеса.
- № 2. Изучение законов сохранения момента импульса и энергии.
- № 3. Изучение законов вращательного движения твердого тела.
- № 4. Определение моментов инерции твердых тел методом крутильных колебаний.
- № 5. Определение моментов инерции тел произвольной формы.
- № 6. Изучение законов поступательного движения.
- № 7. Изучение законов соударения тел.

- № 9. Определение ускорения свободного падения с помощью математического и физического маятников.
- № 10. Изучение колебаний пружинного маятника.
- № 11а. Изучение собственных колебаний струны.
- № 12. Определение ускорения силы тяжести при свободном падении тела.
- № 13. Изучение закона сохранения энергии с помощью маятника Максвелла.

Раздел 2.

- № 16. Определение коэффициента Пуассона для воздуха методом адиабатического расширения.
- № 17. Экспериментальная проверка уравнения состояния и законов идеального газа.
- № 19. Определение коэффициента Пуассона воздуха акустическим методом.
- № 21. Исследование температурной зависимости удельной теплоемкости алюминия методом охлаждения.
- № 23. Определение коэффициента вязкости воздуха и кинематических характеристик движения его молекул.
- № 24. Изучение газовых законов и определение коэффициента Пуассона газа методом Клемана-Дезорма.
- № 25. Определение коэффициентов теплопроводности металлов.
- № 26. Определение коэффициентов теплопроводности твердых диэлектриков.
- № 27. Определение коэффициента теплопроводности воздуха и кинематических характеристик теплового движения егомолекул.
- № 28. Определение удельной теплоты плавления олова и изменения его энтропии при нагревании и плавлении.
- № 29. Изучение взаимосвязи параметров состояния идеального газа и газовых законов.
- № 116. Определение отношения теплоемкостей газа при постоянном давлении и объеме.
- № 119. Определение отношения теплоемкостей газа при постоянном давлении и объеме резонансным методом.
- № 122. Определение теплоты парообразования воды.
- № 123. Определение коэффициента вязкости воздуха капиллярным методом.
- № 124. Определение молекулярной массы и плотности газа методом откачки.
- № 125. Определение теплоемкости твердых тел.
- № 127. Определение коэффициента теплоемкости газа методом нагретой нити.
- № 128. Определение энтропии твердого тела при его нагревании и плавлении.
- № 130. Определение коэффициента взаимной диффузии воздуха и паров воды по скорости испарения жидкости.
- http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_lab_1_razdel.rar Раздел 3
- № 31. Исследование электростатического поля.
- № 32. Изучение законов постоянного тока.
- № 33. Изучение законов постоянного тока. Исследование зависимости КПД источника тока от сопротивления нагрузки.
- № 34. Экспериментальная проверка правил Кирхгофа.
- № 35. Изучение термоэлектронной эмиссии металлов. Определение удельного заряда электрона.
- № 36. Изучение термоэлектронной эмиссии металлов. Определение работы выхода электрона.
- № 37. Изучение процессов заряда и разряда конденсатора.
- № 38. Измерение электрических свойств твердых диэлектриков.
- № 39. Определение электродвижущей силы источника напряжения методом компенсации.
- № 41. Изучение газового разряда.
- № 43. Изучение диэлектрических свойств сегнетоэлектриков.
- № 45. Определение ЭДС источника тока с помощью закона Ома.

- № 46. Определение удельного заряда электрона методом магнетрона.
- № 47. Определение горизонтальной составляющей магнитного поля Земли.
- № 52. Изучение свойств ферромагнетиков и явления гистерезиса для железа.
- № 53. Изучение магнитного поля соленоида.
- № 54. Изучение явления взаимной индукции.
- № 56. Определение постоянной Холла.
- № 60. Изучение магнитного поля прямолинейного тока.

http://ugatu.su/assets/files/documents/study/metod/PHYS/met_ukaz_lab_2_razdel.rar

Образовательные технологии

При реализации дисциплины дистанционные образовательные технологии и электронное обучение, а также сетевое обучение не реализуется.

Материально-техническое обеспечение дисциплины

Привести конкретные аудитории с номерами, например:

- лекционные аудитории с современными средствами демонстрации 6-318, 6-114.
- кафедральные лаборатории, обеспечивающих реализацию ОПОП ВО: 6-312Дисплейный класс.

Программное обеспечение лабораторных работ

No	Наименование ресурса	Объем фонда	Доступ	Реквизиты
		электронного		договоров
		ресурса		
1	MatLab,Simulink	до 50 мест	По сети УГАТУ	MATLAB,Simulink
				(Гос.контракт на
	MATLAB Distributed	256 мест		основании
	Computing Server			протокола единой
				комиссии по
				размещению заказов УГАТУ №ЭА 01-
				271/11 от 08.12.2011
				и др., до 50 мест);
				MATLAB Distributed
				Computing Server
				(Гос.контракт на
				основании
				протокола единой
				комиссии по
				размещению заказов
				УГАТУ №ЭА 01-
				271/11 or 08.12.2011
	CHC II	1006047	TI TIEATET	и др., 256 мест)
2	СПС «КонсультантПлюс»	1806347	По сети УГАТУ	Договор 1392/0403-
	M: G COL C 2014			14 ot 10.12.14
3	Microsoft SQL Server 2014	не ограничен	свободный по сети	не требуется
	Management Studio		Интернет	версия 12.0.2000.8
				12.0.2000.8

Учебная лаборатория современной физики: «Молекулярная физика».

Учебная лаборатория современной физики: «Механика».

Учебная лаборатория современной физики: «Электричество».

Учебная лаборатория современной физики: «Электромагнетизм».

Дисплейный класс.

Большая физическая аудитория.

Кабинет лекционных демонстраций.

Учебно-научно-исследовательская лаборатория проблем современной физики (две аудитории).

Учебно-научно-исследовательская лаборатория молекулярной спектроскопии.

Учебно-научно-исследовательская лаборатория физики наноматериалов (две аудитории).

Учебно-научно-исследовательская лаборатория моделирования физических процессов.

Адаптация рабочей программы для лиц с ОВЗ

Адаптированная программа разрабатывается при наличии заявления со стороны обучающегося (родителей, законных представителей) и медицинских показаний (рекомендациями психолого-медико-педагогической комиссии). Для инвалидов адаптированная образовательная программа разрабатывается в соответствии с индивидуальной программой реабилитации.