МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Высокопроизводительных вычислительных технологий и систем

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ

УЧЕБНОЙ ДИСЦИПЛИНЫ

«ОСНОВЫ СУПЕРКОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ И ПАРАЛЛЕЛЬНОГО ПРОГРАММИРОВАНИЯ»

Уровень подготовки: высшее образование – бакалавриат

Направление подготовки бакалавров

<u>02.03.01 Математика и компьютерные науки</u>

(код и наименование направления подготовки)

Направленность подготовки

Математическое и компьютерное моделирование

Квалификация (степень) выпускника бакалавр

Форма обучения очная

Уфа 2015

Исполнители: ст. преподаватель

должность

подпись

А.В. Юлдашев расшифровка подписи

Заведующий кафедрой ВВТиС

подпись

Р.К. Газизов расшифровка подписи

1. Место дисциплины в структуре образовательной программы

Дисциплина «Основы суперкомпьютерных технологий и параллельное программирование» является обязательной дисциплиной вариативной части.

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки бакалавров 02.03.01 «Математика и компьютерные науки», утвержденного приказом Министерства образования и науки Российской Федерации от "07" августа 2014 г. № 949.

Целью освоения дисциплины является освоение технологий программирования современных параллельных вычислительных систем для высокопроизводительного численного моделирования.

Задачи:

- сформировать представления о суперкомпьютерных системах и прикладных задачах, требующих проведения высокопроизводительных вычислений;
 - ознакомить с основами параллельной обработки и параллельного программирования;
- привить навыки работы с системным программным обеспечением параллельных вычислительных систем;
- научить разрабатывать простейшие параллельные приложения для многоядерных, многопроцессорных и гибридных вычислительных систем;
 - научить оценивать эффективность распараллеливания.

2. Перечень результатов обучения

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций. Планируемые результаты обучения по дисциплине:

№	Формируемые компетенции	К о д	Знать	Уметь	Владеть
1	Способность находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем	О П К -4	основные принципы со- здания многопоточных программ и методы оценки их эффективно- сти; основные подходы и алгоритмы решения за- дач компьютерного мо- делирования на много- процессорных вычисли- тельных системах; па- раллельные численные алгоритмы решения ти- повых вычислительных задач;	использовать типовые многопоточные алгоритмы, оценивать их эффективность; использовать многопроцессорные и многоядерные вычислительные системы для решения задач математического моделирования;	навыками реализации параллельных алгоритмов и их использования для решения прикладных задач
2	Способность использовать современные прикладные программные средства и осваивать современные технологии программирования	П К П -1	основные средства разработки и отладки параллельного программного обеспечения	использовать средства разра- ботки и отладки многопоточных программ для многоядерных вычислительных систем; использовать различные средства разра- ботки параллельных приложений;	навыками написания и отладки параллельных программ для многоядерных вычислительных систем и для многопроцессорных вычислительных систем различных архитектур;

3. Содержание и структура дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 зачетных единиц (252 часа).

No	Наименование и содержание раздела		
1	Базовые принципы параллельной обработки данных		
2	Архитектурные принципы параллелизма		
3	Модели и средства параллельного программирования		
4	Интерфейс OpenMP		
5	Средства отладки и оптимизации многопоточных программ		
6	Гибридные вычислительных системы		
7	Программно-аппаратная архитектура CUDA		
8	Технологии программирования гибридных систем, основанные на директивах, стандарт OpenACC		
9	Оптимизированные библиотеки и пакеты прикладных программ		
10	История развития суперкомпьютерных технологий		
11	Системное программное обеспечение многопроцессорных систем		
12	Параллельное программирование многопроцессорных систем средствами МРІ		
13	Разработка параллельных алгоритмов и оценка их эффективности		
14	Оценка коммуникационной трудоемкости параллельных алгоритмов		
15	Методы анализа параллельных алгоритмов		
16	Простейшие типовые параллельные численные алгоритмы		

Подробное содержание дисциплины, структура учебных занятий, трудоемкость изучения дисциплины, входные и исходящие компетенции, уровень освоения, определяемый этапом формирования компетенций, учебно-методическое, информационное, материально-техническое обеспечение учебного процесса изложены в рабочей программе дисциплины.

ЗАКЛЮЧЕНИЕ

Научно-методического совета по УГСН 02.00.00 «Компьютерные и информационные науки»

Настоящим подтверждаю, что представленный комплект аннотаций рабочих программ учебных дисциплин по направлению подготовки бакалавров 02.03.01 «Математика и компьютерные науки» по профилю «Математическое и компьютерное моделирование», реализуемой по очной форме обучения соответствует рабочим программам учебных дисциплин указанной выше образовательной программы.

Председатель НМС

1

Н.И. Юсупова
 « Д » 05 ____ 201 5 г.